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Office hours 

General information 

Teaching Assistants: During laboratory sessions 

 Instructors: Cosme Furlong  Christopher Scarpino 

Office: HL-151  Office: HL-153 

Everyday: During laboratory 

9:00 to 9:50 am sessions 
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Equivalent systems 

Original system 

m 

Fd = b • dx/dt 

x 
y z 

Equivalent system 
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Equivalent systems 

From: W. T. Thomson et al., “Theory of vibrations with applications,” Prentice-Hall, 1993 
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m 

Fd = b • dx/dt 

Governing equation: 

External force 

Analysis of a single degree of freedom system 
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Consider governing equation: 

Second order differential equation 

with constant coefficients. 

Analysis of a single degree of freedom system 
First case: F(t) = 0  - Free vibrations 
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Governing equation can be written as: 02 2
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Possible solution has the form: 
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So the characteristic equation is: 02 22
 ωλmm ii

Roots of characteristic equation: 
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Analysis of a single degree of freedom system 
First case: F(t) = 0  - Free vibrations 

Critically damped system 

Over-damped system 

Under-damped system 
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Critically damped system 

Analysis of a single degree of freedom system 
First case: F(t) = 0  - Free vibrations 

022 

Solution to the governing 

differential equation: 
tmtm teCeCtx 11

21)( 

Critical damping factor bc is the minimum damping 

that results in non-periodic motions 

Critical damping coefficient: 

Fundamental frequency: 
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Over-damped system 

Analysis of a single degree of freedom system 
First case: F(t) = 0  - Free vibrations 
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Solution to the governing 

differential equation: 
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Fundamental frequency: 
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Under-damped system 

Analysis of a single degree of freedom system 
First case: F(t) = 0  - Free vibrations 

022 

(m1 and m2 are complex  

numbers, why?) 

tmtm eCeCtx 21

21)( Solution to the governing 

differential equation: 
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Fundamental frequency: 
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Analysis of a single degree of freedom system 
First case: F(t) = 0  - Free vibrations 

Under-damped system 022 

Fundamental frequency: -- see previous equation for x(t) 
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Recall: critical damping coefficient: 
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Analysis of a single degree of freedom system 
First case: F(t) = 0  - Free vibrations 

Note that it is possible to write: (Demonstrate in-class) 

Solution of the governing differential equation can be written as: 

Under-damped system 022 
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Analysis of a single degree of freedom system 
First case: F(t) = 0  - Free vibrations 

Exponential envelope: 

Under-damped system 022 
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Analysis of a single degree of freedom system 
First case: F(t) = 0  - Free vibrations 

Logarithmic 

decrement: 

Under-damped system 022 
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Analysis of a single degree of freedom system 
First case: F(t) = 0  - Free vibrations 

Logarithmic decrement: 

Under-damped system 022 
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