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Office hours 

General information 

Teaching Assistants: During laboratory sessions 

 Instructors: Cosme Furlong  Christopher Scarpino 

Office: HL-151  Office: HL-153 

Everyday: During laboratory 
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Lab #3: RSS uncertainty 

(Include uncertainty analyses in your Lab Report #3) 

Derive complete RSS uncertainty equation for measurements 
of internal pressure, P, recovered from strain-
measurements (Eq. 4, in description of Lab#3).  Make 
sure to: 

 (a) Indicate, in order of importance, percentage 
contribution of all uncertainties to the overall 
uncertainty. 

 (b) Plot uncertainty in internal pressure, P, as a function of 
measured tangential (Hoop) strain, Hoop. 

 Discuss your results. 
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Lab #3: RSS uncertainty 

),,,,(
)2/1(





 rtEPP

r

tE
P

Governing equation 
(based on tangential 

- Hoop - strain): 

2/1
22222



















































































P
r

r

PP
t

t

P
E

E

P
P

RSS uncertainty of pressure 

;)(
1

AxialHoopHoop
E



t

rP

t

rP
AxialHoop

2
; 

Pressure is obtained from these equations: 

Hoop

Axial



     Mechanical Engineering Department 

;
)2/1( 








r

t

E

P

Partial derivatives 

;
)2/1( 








r

E

t

P
;

)2/1( 






r

tEP

;
)2/1(2 








r

tE

r

P
.

)2/1(2

1
2








r

tEP

),,,,(
)2/1(





 rtEPP

r

tE
P

Lab #3: RSS uncertainty 



     Mechanical Engineering Department 

Uncertainty parameters (make sure to justify values used) 
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Remember: it is possible to have more 
than one independent variable 

Lab #3: RSS uncertainty 
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Lab #3: RSS uncertainty 

Pressure as a function of measured Hoop strain 

Strain, microStrain 
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Uncertainty in pressure 

Add uncertainty analyses into your Lab Report #3 
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Percentage contribution of uncertainties 
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Add uncertainty analyses into your Lab Report #3 
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Percentage contribution of uncertainties 

(Linear-Linear) 
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(Linear-Log) 
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Note percentage contribution of uncertainties as a function of strain: 
see for example at the level of 600 Strain 

(Linear-Log) 
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For your lab report: you must include uncertainty limits 

(Linear-Linear) 
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For your lab report: you must include uncertainty limits 

(Log-Log) 
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Your measurement points 
(shown are data for 6 

different brands of cans) 

For your lab report: you must include uncertainty limits 

Must also include measured data points (i.e., your measurements) 
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Each data point (one brand 
of cans) has its own 

statistics 

For your lab report: you must include uncertainty limits 

Must also include measured data points (i.e., your measurements) 
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Dynamic response of structures: motion transducers 
Experimental modal analysis 

Typical experimental setup 

Force 

transducer 

Power amplifier 

Signal analyzer 

Computer 

Shaker 

Accelerometer 

Accelerometers 
(to measure 

response of a 
structure) 

Shaker 
(to dynamically 

excite a structure) 
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Motion / position control of machinery 
High-precision manufacturing and positioning 

Application of motion transducers in 
wireless motion/position control 

Robotic arm with multiple 
degrees of freedom 
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Dynamic response of structures: motion transducers 

There are different types of motion transducers, which are 
classified based on their principle of operation: 

● Strain variations 

● Piezoelectric  

● Piezoresistive 

● Electro-mechanical 

● Optical (e.g., laser vibrometer, interferometry) 

● etc. 

Selection of a motion transducer is based on required: accuracy, 
resolution, repeatability, thermo-mechanical stability, dimensions, 
response-time, etc. 
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m = proof mass 

c = dashpot (damper) 

k = spring constant 

x = displacement of proof mass 

y = displacement of the vibrating body 

Motion transducers: accelerometers 
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Accelerometers: simplified SDF model 

● Using Newton’s 2nd law, the governing ODE of this system can be 
expressed as 

● Defining the relative displacement, z, as 

● If the vibrating body is subjected to a harmonic excitation 

● The governing ODE of the system can be written as 

    0 yxkyxcxm 

yxz 

 tmkzzczm  sin2 

 ty  sin
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Accelerometers: simplified SDF model 

● Solution of previous equation has steady and transient components 

● Steady state solution indicates that 

   tHZ sin

with the amplitude H defined as 
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Accelerometers: simplified SDF model 
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