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Lab #3: RSS uncertainty
(Include uncertainty analyses in your Lab Report #3)

Derive complete RSS uncertainty equation for measurements
of internal pressure, P, recovered from strain-
measurements (Eq. 4, in description of Lab#3). Make
sure to:

(a) Indicate, in order of importance, percentage
contribution of all uncertainties to the overall
uncertainty.

(b) Plot uncertainty in internal pressure, P, as a function of
measured tangential (Hoop) strain, eyoop.

Discuss your results.
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Lab #3: RSS uncertainty
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RSS uncertainty of pressure
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Pressure is obtained from these equations:
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Lab #3: RSS uncertainty
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Lab #3: RSS uncertainty

Uncertainty parameters (make sure to justify values used)

E =10x10° psi SE =0.10- E psi
t =0.003 inch 8t =5x10~* inch
r=1.28Inch 8r =5x10"inch
v=03 v =0.05

8¢ = 25x107° = 25 uStrain

In this case, independent variable is "strain“: 6P = 6P (¢)

Remember: it is possible to have more
than one independent variable
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Lab #3: RSS uncertainty

Pressure as a function of measured Hoop strain
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Pressure, psi
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Add uncertainty analyses into your Lab Report #3

Uncertainty in pressure

(Linear-Linear) (Linear-Log)
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Add uncertainty analyses into your Lab Report #3

Percentage contribution of uncertainties
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Each contribution is a function of one independent variable
(i.e., strain)
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Percentage contribution of uncertainties

Note percentage contribution of uncertainties as a function of strain

(Linear-Linear)
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Percentage contribution of uncertainties

Note percentage contribution of uncertainties as a function of strain
(Linear-Log)
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Percentage contribution of uncertainties

Note percentage contribution of uncertainties as a function of strain:
see for example at the level of 600 uStrain

(Linear-Log)

110°
1" N0/
100 fee G U U SO DU N
PcPIE(es) 68 77% Thickness
S PePlthi(es) 10 |l el 24.76% Elastic modulus
2 ... 5 =~—1.4.29% Strain
a PcPIss(es) i T
-E - = omem 1 . —— e
% PcPIra(ss) — A5/
o -P;n;lv(ss) Poisson's
=~ 0.1
Check(es) T
Radius
110° L
0 200 400 600 800 1000 1200 1400 1600 1800 2000

88-106
Strain, microStrain

(5

3 z

o El

Mechanical Engineering Department @ &
L




Pressure, psi
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Uncertainty limits added to nominal pressure

For your lab report: you must include uncertainty limits

(Linear-Linear)
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Pressure, psi

Uncertainty limits added to nominal pressure

For your lab report: you must include uncertainty limits
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For your lab report: you must include uncertainty limits

Must also include measured data points (i.e., your measurements)
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For your lab report: you must include uncertainty limits

Must also include measured data points (i.e., your measurements)
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Dynamic response of structures: motion transducers
Experimental modal analysis

Typical experimental setup
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Motion / position control of machinery
High-precision manufacturing and positioning

Application of motion transducers in Robotic arm with multiple
wireless motion/position control
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Dynamic response of structures: motion transducers

There are different types of motion transducers, which are
classified based on their principle of operation:

® Strain variations

® Piezoelectric

® Piezoresistive

® Electro-mechanical

® Optical (e.g., laser vibrometer, interferometry)

® etfc.

Selection of a motion transducer is based on required: accuracy,
resolution, repeatability, thermo-mechanical stability, dimensions,
response-time, etc.
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Motion transducers: accelerometers
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m = proof mass

¢ = dashpot (damper)

K = spring constant

X = displacement of proof mass

y = displacement of the vibrating body
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Accelerometers: simplified SDF model

e Using Newton's 2"d law, the governing ODE of this system can be
expressed as

mx +c(x—y)+k(x—y)=0
® Defining the relative displacement, z, as
Z=X—Y

® If the vibrating body is subjected to a harmonic excitation

y = Bsin(at)

® The governing ODE of the system can be written as

mZ +c2 + kz = mw? Bsin(wt)
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Accelerometers: simplified SDF model

® Solution of previous equation has steady and transient components

® Steady state solution indicates that

Z = Hsin(awt — ¢)
with the amplitude H defined as
o 2
ﬂ[j 20 =
H= “n tan ¢ = d
I 272 2 W)
G s
W Wn W,
where Czcﬁzdamping ratio
wﬂzfrequency ratio
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Accelerometers: simplified SDF model
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Higher resonance frequency of accelerometer =
higher quality of a measurement
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