WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

Engineering Experimentation ME-3901, D'2012

Lecture 10 09 April 2012

General information

Office hours

Instructors: Cosme Furlong Christopher Scarpino Office: HL-151 Office: HL-153 **9:00 to 9:50 am sessions**

Everyday: During laboratory

Teaching Assistants: During laboratory sessions

(Include uncertainty analyses in your Lab Report #3)

Derive **complete** RSS uncertainty equation for measurements of internal pressure, *P*, recovered from strainmeasurements (Eq. 4, in description of Lab#3). Make sure to:

- (a) Indicate, in order of importance, percentage contribution of all uncertainties to the overall uncertainty.
- (b) Plot uncertainty in internal pressure, *P*, as a function of measured tangential (Hoop) strain, $\varepsilon_{\text{Hoop}}$.

Discuss your results.

Governing equation (based on tangential - Hoop - strain):

$$
P = \frac{E t \varepsilon}{r(1 - v/2)} \Rightarrow P = P(E, t, \varepsilon, r, v)
$$

RSS uncertainty of pressure

$$
\delta P = \left[\left(\frac{\partial P}{\partial E} \delta E \right)^2 + \left(\frac{\partial P}{\partial t} \delta t \right)^2 + \left(\frac{\partial P}{\partial \varepsilon} \delta \varepsilon \right)^2 + \left(\frac{\partial P}{\partial r} \delta r \right)^2 + \left(\frac{\partial P}{\partial v} \delta v \right)^2 \right]^{1/2}
$$

t

Pressure is obtained from these equations:

\n
$$
\varepsilon_{\text{Hoop}} = \varepsilon = \frac{1}{E} (\sigma_{\text{Hoop}} - \nu \sigma_{\text{Axial}});
$$
\n
$$
\sigma_{\text{Hoop}} = \frac{Pr}{t}; \quad \sigma_{\text{Axial}} = \frac{Pr}{2t}
$$

t

$$
P = \frac{E t \varepsilon}{r(1 - v/2)} \Rightarrow P = P(E, t, \varepsilon, r, v)
$$

Partial derivatives

$$
\frac{\partial P}{\partial E} = \frac{t \varepsilon}{r(1 - v/2)}; \qquad \frac{\partial P}{\partial t} = \frac{E \varepsilon}{r(1 - v/2)}; \qquad \frac{\partial P}{\partial \varepsilon} = \frac{Et}{r(1 - v/2)};
$$

$$
\frac{\partial P}{\partial r} = -\frac{E t \varepsilon}{r^2 (1 - v/2)}; \qquad \frac{\partial P}{\partial v} = \frac{1}{2} \frac{E t \varepsilon}{r (1 - v/2)^2}.
$$

Uncertainty parameters (make sure to justify values used)

 $\delta \epsilon = 25 \times 10^{-6} = 25 \mu \text{Strain}$

In this case, independent variable is "strain": $\delta P = \delta P(\varepsilon)$

Remember: it is possible to have more than one independent variable

Pressure as a function of measured Hoop strain

Add uncertainty analyses into your Lab Report #3

Uncertainty in pressure

Add uncertainty analyses into your Lab Report #3

Percentage contribution of uncertainties

Square of
\nuncertainty:
$$
\delta P^2 = \left(\frac{\partial P}{\partial E}\delta E\right)^2 + \left(\frac{\partial P}{\partial t}\delta t\right)^2 + \left(\frac{\partial P}{\partial \varepsilon}\delta \varepsilon\right)^2 + \left(\frac{\partial P}{\partial r}\delta r\right)^2 + \left(\frac{\partial P}{\partial v}\delta v\right)^2
$$

Individual contributions:

$$
1 = \frac{1}{\delta P^2} \left[\left(\frac{\partial P}{\partial E} \delta E \right)^2 + \left(\frac{\partial P}{\partial t} \delta t \right)^2 + \left(\frac{\partial P}{\partial \varepsilon} \delta \varepsilon \right)^2 + \left(\frac{\partial P}{\partial r} \delta r \right)^2 + \left(\frac{\partial P}{\partial v} \delta v \right)^2 \right]
$$

Each contribution is a function of one independent variable (i.e., strain)

Percentage contribution of uncertainties

Note percentage contribution of uncertainties as a function of strain

(Linear-Linear)

Percentage contribution of uncertainties

Note percentage contribution of uncertainties as a function of strain

 -10^3 1 Thickness 00
10 100 $PePE(\epsilon s)$ Elastic modulus $PcPIthi(\varepsilon s)$ % contribution % contribution 10 **Strain** $PcPI\epsilon s(\epsilon s)$ 1 $PePIra(\epsilon s)$ Poisson's Radius $PcPIv(\epsilon s)$ 0.1 $Check(\varepsilon s)$ 0.01 $\frac{1000}{\text{es} \cdot 10^6}$ $1 \cdot 10^{-3}$ 1 0 200 200 400 600 800 1000 1200 1400 1600 1800 2000 . Strain, microStrain

6 0

Percentage contribution of uncertainties

Note percentage contribution of uncertainties as a function of strain: see for example at the level of 600μ Strain

Mechanical Engineering Department

led to no **Uncertainty limits added to nominal pressure**

For your lab report: you **must** include uncertainty limits

(Linear-Linear)

ked to no **Uncertainty limits added to nominal pressure**

For your lab report: you **must** include uncertainty limits

For your lab report: you must include uncertainty limits $\overline{}$

Must also include measured data points (i.e., your measurements)

Mechanical Engineering Department

For your lab report: you must include uncertainty limits $\overline{}$

Must also include measured data points (i.e., your measurements)

Dynamic response of structures: motion transducers Experimental modal analysis

Typical experimental setup

Accelerometers (to measure response of a structure)

Shaker (to dynamically excite a structure)

Motion / position control of machinery High-precision manufacturing and positioning

Application of motion transducers in wireless motion/position control

Robotic arm with multiple degrees of freedom

Dynamic response of structures: motion transducers

There are different types of motion transducers, which are classified based on their principle of operation:

- Strain variations
- Piezoelectric
- Piezoresistive
- Electro-mechanical
- Optical (e.g., laser vibrometer, interferometry)

 \bullet etc.

Selection of a motion transducer is based on required: accuracy, resolution, repeatability, thermo-mechanical stability, dimensions, response-time, etc.

Motion transducers: accelerometers

- *c =* dashpot (damper)
- *k =* spring constant
- $x =$ displacement of proof mass
- $y =$ displacement of the vibrating body

Accelerometers: simplified SDF model

• Using Newton's 2nd law, the governing ODE of this system can be expressed as

$$
m\ddot{x} + c(\dot{x} - \dot{y}) + k(x - y) = 0
$$

● Defining the relative displacement, *z*, as

$$
z = x - y
$$

• If the vibrating body is subjected to a harmonic excitation

$$
y = \beta \sin(\omega t)
$$

• The governing ODE of the system can be written as

$$
m\ddot{z} + c\dot{z} + kz = m\omega^2 \beta \sin(\omega t)
$$

Accelerometers: simplified SDF model

- Solution of previous equation has steady and transient components
- Steady state solution indicates that

 $Z = H \sin(\omega t - \phi)$

with the amplitude *H* defined as

where

 $=$ frequency ratio $\zeta = \frac{c}{c}$ =damping ratio $\frac{1}{\omega_n}$ $\frac{c}{c}$ *ω c*

2

 $\overline{}$ $\overline{}$

 \setminus

n

 \int

n

ω

ω

ω

^ω ^ζ

1

—

2

 $\overline{}$ \vert

 $\bigg($

 \setminus

Accelerometers: simplified SDF model

Higher resonance frequency of accelerometer = higher quality of a measurement

