General information

Office hours

Instructors: Cosme Furlong
Office: HL-151
Everyday:
9:00 to 9:50 am

Christopher Scarpino
Office: HL-153
During laboratory sessions

Teaching Assistants: During laboratory sessions
Wheatstone bridge

- Use for the comparison and measurement of resistances from 1 Ω to 1 M Ω
- Resistances are arranged in a “diamond” shape
- R_2 and R_3 are normally known resistors (of high-quality)
- R_1 is a variable resistor
- R_x is the unknown resistor
Wheatstone bridge

- Voltage E is applied to the bridge (by closing switch S_1)
- A “balanced” bridge is one with potential difference between B and D is equal to zero
- Balance is sensed by closing switch S_2 and measuring output current and voltage - to be near zero
- Bridge can be balanced by adjusting resistance R_1
Wheatstone bridge

- When bridge is balanced: voltage drop across R_2 is equal to voltage drop across R_1, since voltage difference between B and D is equal to zero. Therefore,

$$i_2 R_2 = i_1 R_1$$

Further,

$$i_2 = i_3 = \frac{E}{R_2 + R_3} \quad \text{if balanced}$$

and

$$i_1 = i_x = \frac{E}{R_1 + R_x} \quad \text{if balanced}$$

If the currents are eliminated from these relations, the result is

$$\frac{R_2}{R_3} = \frac{R_1}{R_x}$$

or

$$R_x = \frac{R_1 R_3}{R_2}$$
Wheatstone bridge: balanced bridge

Example: uncertainty analysis

- For a balanced Wheatstone bridge, determine uncertainty in the measured resistance R_x, as a result of an uncertainty of 1% in the known resistances

$$R_x = \frac{R_1 R_3}{R_2} \implies R_x = R_x(R_1, R_2, R_3)$$

Uncertainty:

$$\delta R_x = \left[\left(\frac{\partial R_x}{\partial R_1} \delta R_1 \right)^2 + \left(\frac{\partial R_x}{\partial R_2} \delta R_2 \right)^2 + \left(\frac{\partial R_x}{\partial R_3} \delta R_3 \right)^2\right]^{1/2}$$

$$\frac{\partial R_x}{\partial R_1} = \frac{R_3}{R_2}; \quad \frac{\partial R_x}{\partial R_2} = -\frac{R_1 R_3}{R_2^2}; \quad \frac{\partial R_x}{\partial R_3} = \frac{R_1}{R_2};$$
Wheatstone bridge: balanced bridge

Example: uncertainty analysis

Determine percentage:
\[
\frac{\delta R_x}{R_x} = \left[\left(\frac{1}{R_1} \delta R_1 \right)^2 + \left(-\frac{1}{R_2} \delta R_2 \right)^2 + \left(\frac{1}{R_3} \delta R_3 \right)^2 \right]^{1/2}
\]

Recall:
\[
R_x = \frac{R_1 R_3}{R_2}
\]

Percentages
(Same % contributions)

Determine percentage (numerical value):
\[
\frac{\delta R_x}{R_x} = \left[(0.01)^2 + (-0.01)^2 + (0.01)^2 \right]^{1/2} = 0.01732 \Rightarrow 1.732\%
\]
Wheatstone bridge: unbalanced bridge

- R_1, R_2, R_3, R_4 are different
Wheatstone bridge: unbalanced bridge

Equivalent circuit of bridge at the output:
Wheatstone bridge: unbalanced bridge

Equivalent resistance:

\[R = \frac{R_1R_4}{R_1 + R_4} + \frac{R_2R_3}{R_2 + R_3} \]

Current at the output is:

\[i_g = \frac{E_g}{R + R_g} \]

Recall a voltage divider:

\[i_b = \frac{E}{R_1 + R_4} \]

\[E_4 = \left(\frac{E}{R_1 + R_4} \right) \cdot R_4 \]
Wheatstone bridge: unbalanced bridge

Considering voltage divider on a bridge:

\[E_g = \left(\frac{E}{R_1 + R_4} \right) R_1 - \left(\frac{E}{R_2 + R_3} \right) R_2 \]

\[= E \left(\frac{R_1}{R_1 + R_4} - \frac{R_2}{R_2 + R_3} \right) \]

and

\[E_g = \left(\frac{E}{R_1 + R_4} \right) R_4 - \left(\frac{E}{R_2 + R_3} \right) R_3 \]

\[= E \left(\frac{R_4}{R_1 + R_4} - \frac{R_3}{R_2 + R_3} \right) \]
Wheatstone bridge: unbalanced bridge
What about if one resistance changes by a small amount?

Use: \[\Delta R_4 \Rightarrow \Delta E_g \]

Therefore, \[E_g + \Delta E_g = E \left(\frac{(R_4 + \Delta R_4) R_2 - R_3 R_1}{(R_1 + R_4 + \Delta R_4)(R_2 + R_3)} \right) \]

Divide numerator and denominator by: \(R_2 \ R_4 \)

\[
E_g + \Delta E_g = E \left(\frac{1 + \Delta R_4 / R_4 - R_3 R_1 / R_4 R_2}{(1 + R_1 / R_4 + \Delta R_4 / R_4)(1 + R_3 / R_2)} \right)
\]
Wheatstone bridge: unbalanced bridge

What about if one resistance changes by a small amount?

If all resistors are initially the same:
\[\left(E_g = 0; \quad R_i = R \right) \]

\[\frac{\Delta E_g}{E} = \frac{\Delta R_4 / R}{4 + 2(\Delta R_4 / R)} \]

But because changes in resistance are small, i.e., \(\Delta R_4 << 1 \)

\[\frac{\Delta E_g}{E} \approx \frac{\Delta R_4}{4R} \]
Stress and strain (pay attention to nomenclature)

Axial strain: \[\varepsilon = \frac{T}{AE} = \frac{\sigma_a}{E} = \frac{dL}{L} = \varepsilon_a \]

Poisson’s ratio: \[\mu = -\frac{\varepsilon_t}{\varepsilon_a} = -\frac{dD/D}{dL/L} \]

Volume of rod is: \[V = L \cdot A = L \cdot \frac{\pi}{4} D^2 \]

Volume is constant, therefore
\[dV = 0 = L \, dA + A \, dL \]
\[\Rightarrow \frac{dA}{A} = -\frac{dL}{L} \quad \Rightarrow \quad 2 \frac{dD}{D} = -\frac{dL}{L} \]

\[dV = 0 = D \, dL + 2L \, dD \]

(i.e., \(\mu = 0.5 \), in this condition)
Strain gages

Electrical resistance: \[R = \rho \frac{L}{A} \]

Differentiate resistance: \[dR = \frac{L}{A} d\rho + \frac{\rho}{A} dL - \frac{\rho L}{A^2} dA \]

\[\Rightarrow \frac{dR}{R} = \frac{d\rho}{\rho} + \frac{dL}{L} - \frac{dA}{A} \]

\[\Rightarrow \frac{dR}{R} = \frac{d\rho}{\rho} + \varepsilon_a - 2 \frac{dD}{D} = \frac{d\rho}{\rho} + \varepsilon_a - 2 \left(-\mu \frac{dL}{L} \right) \]

\[\Rightarrow \frac{dR}{R} = \frac{d\rho}{\rho} + \varepsilon_a - 2 \left(-\mu \frac{dL}{L} \right) = \frac{d\rho}{\rho} + \varepsilon_a (1 + 2\mu) \]
Strain gages

Definition of gage factor: \[F = \frac{dR}{R} \frac{1}{\varepsilon_a} \]

(From previous page) \[\Rightarrow F = 1 + 2\mu + \frac{1}{\varepsilon_a} \frac{d\rho}{\rho} \]

If resistivity does not change \[\Rightarrow F = 1 + 2\mu \]

And strain with change of resistance is: \[\Rightarrow \varepsilon_a = \frac{1}{F} \frac{\Delta R}{R} \]

A typical strain gage has a gage factor \(\approx 2.095 \pm 0.5\% \).
Why? How is this possible? Open for discussions