Lecture 4. Least-squares fitting of a line and computation of correlation coefficient. Sample data set #3, see lecture notes:

$$\mathbf{R} := \mathbf{X}^{\mathrm{T}} \cdot \mathbf{Y} \qquad \qquad \mathbf{M} := \mathbf{X}^{\mathrm{T}} \cdot \mathbf{X}$$

$$R = \begin{pmatrix} 797.47 \\ 82.5 \end{pmatrix} \qquad M = \begin{pmatrix} 1.001 \times 10^3 & 99 \\ 99 & 11 \end{pmatrix} \qquad M^{-1} = \begin{pmatrix} 9.091 \times 10^{-3} & -0.082 \\ -0.082 & 0.827 \end{pmatrix}$$
$$u := M^{-1} \cdot R \qquad u = \begin{pmatrix} 0.5 \\ 3.002 \end{pmatrix} \qquad (Vector of unknowns, i.e., slope and dc offset)$$

Fitted line:

 $\mathbf{y}(\mathbf{x}) \coloneqq \mathbf{u}_0 \cdot \mathbf{x} + \mathbf{u}_1$

(to compute values predicted by this linear model)

Plot of residuals (measured minus predicted):

Note that:

1) Second data point is not characteristic and should be discarded (use Chauvenet's criterion);

2) Correlation coefficient is a measure of how good mathematical model used (in this case a line) represents the measured data.

Determination of +/- ranges for slope and dc offset: probability approach

Estimate standard deviation:

Nparameters := 2		(two parameters, slope and dc offset)
DOF := $(N + 1) - Nparameters$	DOF = 9	Degrees of freedom
$S_{w} := \sqrt{\frac{SSerr}{DOF}}$	S = 1.236	
Use a 95% confidence level. Therefore,		
	:= 0.05	
Consult <i>t-student</i> distribution:		
	T overTwo :=	= 2.262
$Minv := M^{-1}$		
Ranges.		
Upper range of slope:		
SlopeU := $u_0 + T$ overTwo·S· $\sqrt{Minv_{0,0}}$		SlopeU = 0.766
Lower range of slope:		
SlopeL := $u_0 - T$ overTwo·S· $\sqrt{Minv_{0,0}}$		SlopeL = 0.233
Upper range of dc offset:		
$dcU := u_1 + T \text{ over Two} \cdot S \cdot \sqrt{Minv_{1,1}}$		dcU = 5.546
Lower range of dc offset:		
$dcL := u_1 - T \text{ over Two} \cdot S \cdot \sqrt{1}$	Minv _{1,1}	dcL = 0.459
Equation of line, upper range:		
$yU(x) := SlopeU \cdot x + dcU$		
Equation of line, lower range:		

$$yL(x) := SlopeL \cdot x + dcL$$

Plot of fitted line with +/- ranges (probability approach):

Note that *not* characteristic point has produced a very large range for both slope and dc values. Therefore, it is important to discard such a point (use Chauvenet's criterion).