Lecture 4. Least-squares fitting of a line and computation of correlation coefficient.
Sample data set #3, see lecture notes:

Fitted line:
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u= (Vector of unknowns, i.e.,
3.002 slope and dc offset)

y(X) := up-X+ U1
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Evaluate function: yej := ug-Xj,0 + U1

(to compute values predicted by this linear model)



Plot of residuals (measured minus predicted):
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Sum of the squares of residuals:  SSerr := z (Yi- yei) SSerr = 13.756
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Total sum of squares: SStot := z (Yi- Ymean) SStot = 41.226
i=0
Correlation coefficient (R2): R2:=1- SSert R2 = 0.666
SStot
Note that:

1) Second data point is not characteristic and should be discarded (use Chauvenet's
criterion);

2) Correlation coefficient is a measure of how good mathematical model used (in this
case a line) represents the measured data.



