
Lecture 4.  Least-squares fitting of a line and computation of correlation coefficient. 
Sample data set #3, see lecture notes:

Data for a
linear model
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(note that there
are 11 points)
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Fitted line: y x( ) u0 x⋅ u1+:=
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Evaluate function: yei u0 Xi 0, ⋅ u1+:=

(to compute values predicted by this linear model)



Plot of residuals (measured minus predicted):
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Sum of the squares of residuals: SSerr

0

N

i

Yi yei−( )2∑
=

:= SSerr 13.756=

Ymean
1

N 1+
0

N

i

Yi∑
=

⋅:=

Total sum of squares: SStot
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Correlation coefficient (R2): R2 1
SSerr
SStot

−:= R2 0.666=

Note that:

1) Second data point is not characteristic and should be discarded (use Chauvenet's
criterion);

2) Correlation coefficient is a measure of how good mathematical model used (in this
case a line) represents the measured data.


