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Office hours 

General information 

 Teaching Assistants: During laboratory sessions 

 Instructors: Cosme Furlong  Christopher Scarpino 

Office: HL-151  Office: HL-153 

Everyday: During laboratory 

9:00 to 9:50 am sessions 
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Minimization of errors 

Error, , in measuring a quantity, x, is defined as: 

truem xxError 

Measured quantity True value 

A primary objective in designing and executing an experiment 
is to minimize this error. 
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Uncertainty and probability 

When an experiment is completed, we must determine: 

 1) Measurement uncertainty; and 

 2)  Probability (odds of obtaining “a given number of 
 measurements in n having errors outside the 
 uncertainty limits”); 

In other words, it is necessary to determine: 

)1:(; nuxxux mtruem 

where “u” is the “uncertainty” estimated at odds of “n:1” 
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Bias and precision errors 

Average 
is biased 
from xtrue 

Measured value, xm, 
with respect to 

average 

Probability 
distribution 

having an 
“average” and a 

“standard 
deviation” 
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Classification of errors 

● Calibration errors 

● Consistently recurring human errors 

● Defective equipment 

● Loading errors 

● Limitations of system resolution 

1) Bias or systematic errors 
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Classification of errors 

● Human errors 

● Caused by disturbances to equipment 

● Caused by fluctuating experimental conditions 

● Derived from insufficient measurement-system resolution 

2) Precision or random errors 
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Classification of errors 

● Blunders and mistakes during an experiment 

● Computational errors after an experiment 

3) Illegitimate errors 
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Classification of errors 

● From instrumentation errors: backlash, friction, 
hysteresis 

● From calibration drift and variation in test or 
environmental conditions 

● From variations in procedure or definition among 
experimenters 

4) Errors that can be bias errors or precision errors 
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Calibration errors 
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Hysteresis errors 
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Mean, Standard deviation, Variance,  
and Chauvenet’s criterion 

Actual measurements  

Consider pressure measurements in a low-pressure cylinder 

Pressure 
transducer 

3 gallons tank 

Inlet 
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Mean, Standard deviation, Variance,  
and Chauvenet’s criterion 

Results of repeated measurements of pressure are shown 
in the following table: 

Pressure measurements on a 3 gallons tank 

Actual measurements  
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Bar graph of measured pressure data (review procedure to 
construct a histogram): 

Mean, Standard deviation, Variance,  
and Chauvenet’s criterion 

Actual measurements  
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Problem statement  

Mean, Standard deviation, Variance,  
and Chauvenet’s criterion 

From the measured data, compute their: 

● Mean value 

● Standard deviation and Variance 

● Apply Chauvenet’s criterion for rejection of “not” 
representative data 
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Solution 

Mean, Standard deviation, Variance,  
and Chauvenet’s criterion 

Present the computations and the intermediate results in 
Tabular form.  See Table 1. 

Table 1.  Procedure for computation of statistics 



     Mechanical Engineering Department 

Solution 

The mean of the original data is computed to be: 

Next, individual deviations of the original data with respect 
to the mean are computed: 

mii xxd 
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Solution 

Using these individual deviations, the standard deviation of 
the original data is computed: 

where it should be noted that because the number of 
readings, n, is < 20, the denominator in the previous equation 
is n  1;  

use value of n when number of readings, n  20. 

Variance of original data is: 
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Solution: Chauvenet’s criterion 

Table 2.  Chauvenet’s criterion for data rejection 
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Solution: Chauvenet’s criterion 

Referring to Table 2, the ratio of maximum acceptable 
deviation to standard deviation for n = 10 is:  

96.1max 


d

which indicates that the maximum deviation allowed in the 
data is: 

;25.2033.1096.196.1max psigd 

compare the maximum deviation, dmax, with the individual 
deviations of the original readings (Table 1, third column). 
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Solution: Chauvenet’s criterion 

After doing comparisons, it is clear that: 

● the only reading (i.e., No. 10) with d10 = 22  dmax, must be 
rejected to satisfy Chauvenet’s criterion. 
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Solution: Chauvenet’s criterion 

After data rejection, new statistics must be calculated. 

New mean is therefore: 

With this value, you must also compute new individual 
deviations, their squares, and the sum of the squares of the 
deviations (see: last two columns of Table 1). 
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Solution: Chauvenet’s criterion 

New standard deviation is: 

New variance is: 

Note that n = 9 (after data rejection), and standard deviation 
was computed with n  1 samples.  

Examination of the above results indicates that the mean, 
standard deviation, and variance decrease following data 
reduction. 

Let’s study implications of these results… 
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Solution 

Mean, Standard deviation, Variance,  
and Chauvenet’s criterion 

Present the computations and the intermediate results in 
Tabular form.  See Table 1. 

Table 1.  Procedure for computation of statistics 



     Mechanical Engineering Department 

Bias and precision errors 

Average 
is biased 
from xtrue 

Measured value, xm, 
with respect to 

average 

Probability 
distribution 

having an 
“average” and a 

“standard 
deviation” 
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Standard normal probability distribution function (PDF) 
(aka. normalized Gaussian function) 

From: Beckwith, et. al. 
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Standard normal 
PDF: tabulated 
area 

From: Beckwith, et. al. 






x
z

Recall that: 
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Use of the standard normal PDF 

Example 3.2 (Beckwith): 

● What is the area under the curve between z = 1.43 and z = 1.43 

● What is the significance of this area? 

Solution: 

● From Table 3.2 (Beckwith), ½ area is 0.4236.  Total area is: 
0.8472; 

● Significance: 84.72 % of the population falls between the 
“normal” values of z = 1.43 and z = 1.43 
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Use of the standard normal PDF 

Example 3.3 (Beckwith): 

● What range of x will contain 90 % of the data 

Solution: 

● Find z such that 90/2 = 45 % of the data lie between zero and z; 

● Second 45 % will lie between  z and zero; 

● Using interpolation: z0.45  1.645.   

● Since z = (x  )/ :  

)()( 45.045.0  zxz

)645.1()645.1(  x
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Precision uncertainty 

Consider the problem of measuring the electrical resistance of 
a component (as done in Lab #1); governing equation to use is: 

I

V
R 

Recall that parameters are determined as: 

II

VV







 ,

Therefore, R will be recovered as: RR 

How do we determine R ? 
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Precision uncertainty 

Governing equation to use is: 

I

V
R 

Phenomenological equation is, therefore, ),( IVRR 

Square-root of the sum-of-the squares (RSS) approach 
indicates that the uncertainty, R, in R, can be determined as 
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Uncertainty in measured voltage is: V  

Uncertainty in provided voltage is: I 
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Individual partial derivates are: 

Precision uncertainty 
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Normalized uncertainty is: 
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Problem: estimate uncertainty and normalized uncertainty in 
measurements of electrical resistance (as done in Lab #1). 

Assume: (a) measuring range [ 10,10] V; (b) 12-bit digitization; (c) 
measured voltage of 0.11 V; (d) I = 1 mA; half the least significant 
digit for I; (e) determine R  R 

Discuss your results. 
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Precision uncertainty 

Consider the problem of measuring the electrical resistance of 
a component (as done in Lab #1); governing equation used to 
determine R2 is: 

21
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Determine: R2  R2 

Part of Lab #1 results 


