WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

Engineering Experimentation ME-3901, D'2012

Lecture 03 19 March 2012

General information

Office hours

<u>Instructors</u>: Cosme Furlong Office: HL-151 <u>Everyday</u>: 9:00 to 9:50 am Christopher Scarpino Office: HL-153 During laboratory sessions

<u>Teaching Assistants</u>: During laboratory sessions

Minimization of errors

Error, ε , in measuring a quantity, x, is defined as:

A primary objective in designing and executing an experiment is to *minimize* this error.

Uncertainty and probability

When an experiment is completed, we must determine:

- 1) Measurement uncertainty; and
- Probability (odds of obtaining "a given number of measurements in n having errors outside the uncertainty limits");

In other words, it is necessary to determine:

$$x_m - u \leq x_{true} \leq x_m + u; \quad (n:1)$$

where "u'' is the "uncertainty" estimated at odds of "n:1''

Bias and precision errors

Measured value, x_m

1) Bias or systematic errors

- Calibration errors
- Consistently recurring human errors
- Defective equipment
- Loading errors
- Limitations of system resolution

2) Precision or random errors

- Human errors
- Caused by disturbances to equipment
- Caused by fluctuating experimental conditions
- Derived from insufficient measurement-system resolution

3) Illegitimate errors

- Blunders and mistakes during an experiment
- Computational errors after an experiment

4) Errors that can be bias errors or precision errors

- From instrumentation errors: backlash, friction, hysteresis
- From calibration drift and variation in test or environmental conditions
- From variations in procedure or definition among experimenters

Calibration errors

Figure 3.2 Calibration errors. For ideal response, $x_{\text{measured}} = x_{\text{true}}$. Actual response may include zero-offset error (x_{offset}) and scale error ($\beta \neq 1$) so that $x_{\text{measured}} = \beta x_{\text{true}} + x_{\text{offset}}$.

Hysteresis errors

Actual measurements

Consider pressure measurements in a low-pressure cylinder

Actual measurements

Results of repeated measurements of pressure are shown in the following table:

READING	PRESSURE				
No.	(psig)				
1	100				
2	105				
3	105				
4	110				
5	110				
6	110				
7	115				
8	115				
9	125				
10	135				

Pressure measurements on a 3 gallons tank

Actual measurements

Bar graph of measured pressure data (review procedure to construct a histogram):

Problem statement

From the measured data, compute their:

- Mean value
- Standard deviation and Variance
- Apply Chauvenet's criterion for rejection of "not" representative data

Solution

Present the computations and the intermediate results in Tabular form. See Table 1.

i	\boldsymbol{x}_i	BEFORE	DATA REJ	AFTER DATA REJ		
READING	PRESSURE	$d_i = x_i - x$	$d_m d_i^2$	d_i	d_i^2	
No.	(psig)	(psig)	(psig ²)	(psig)	(psig ²)	
1	100	-13	169	-10.56	111.51	
2	105	-8	64	-5.56	30.91	
3	105	-8	64	-5.56	30.91	
4	110	-3	9	-0.56	0.31	
5	110	-3	9	-0.56	0.31	
6	110	-3	9	-0.56	0.31	
7	115	2	4	4.44	19.71	
8	115	2	4	4.44	19.71	
9	125	12	144	14.44	208.51	
10	135	22	484	Rejected	Rejected	
	$\overline{\Sigma x_i = 1130}$		$\overline{\Sigma d_i^2 = 960}$	Σ	$d_i^2 = 422.19$	

Table 1. Procedure for computation of statistics

Solution

The mean of the original data is computed to be:

$$x_m = \frac{1}{n} \sum_{i=1}^n x_i = \frac{1130}{10} = 113.0 \, psig$$

Next, individual deviations of the original data with respect to the mean are computed:

$$d_i = x_i - x_m$$

Solution

Using these <u>individual deviations</u>, the standard deviation of the <u>original</u> data is computed:

$$\sigma = \left[\frac{1}{n-1}\sum_{i=1}^{n} (x_i - x_m)^2\right]^{\frac{1}{2}} = \left(\frac{960}{10-1}\right)^{\frac{1}{2}} = 10.33 \ psig \quad ,$$

where it should be noted that <u>because the number of</u> <u>readings</u>, n, is < 20, the denominator in the previous equation is n - 1;

use value of *n* when number of readings, $n \ge 20$.

Variance of <u>original data</u> is:

$$\sigma^2 = (10.33 \ psig)^2 = 106.71 \ psig^2$$

Table 2. Chauvenet's criterion for data rejection

Number of	Ratio of maximum acceptable deviation
readings, n	to standard deviation, d_{max}/σ
3	1 38
1	1.58
+	1.54
5	1.65
6	1.73
7	1.80
10	1.96
15	2.13
25	2.33
50	2.57
100	2.81
300	3.14
500	3.29
1000	3.48

Referring to Table 2, the ratio of maximum acceptable deviation to standard deviation for n = 10 is:

 $\frac{d_{\text{max}}}{\sigma} = 1.96$

which indicates that the maximum deviation allowed in the data is:

 $d_{\text{max}} = 1.96 \times \sigma = 1.96 \times 10.33 = 20.25$ psig;

compare the maximum deviation, d_{\max} , with the individual deviations of the original readings (Table 1, third column).

After doing comparisons, it is clear that:

• the only reading (i.e., No. 10) with $d_{10} = 22 \ge d_{\text{max}}$, must be rejected to satisfy Chauvenet's criterion.

PLEASE NOTE: THE DATA REJECTION CAN BE APPLIED ONLY ONCE DURING A GIVEN ANALYSIS. HOWEVER, IT MAY LEAD TO REJECTION OF MORE THAN ONE DATA POINT AT THAT TIME.

After data rejection, new statistics must be calculated.

New mean is therefore:

$$x_m = \frac{1}{n} \sum_{i=1}^n x_i \frac{995}{9} = 110.56 \, psig$$

<u>With this value, you must also compute</u> new individual deviations, their squares, and the sum of the squares of the deviations (see: last two columns of Table 1).

New standard deviation is:

$$\sigma = \left[\frac{1}{n-1}\sum_{i=1}^{n} (x_i - x_m)^2\right]^{\frac{1}{2}} = \left(\frac{422.19}{9-1}\right)^{\frac{1}{2}} = 7.26 \text{ psig}$$

New variance is:

$$\sigma^2 = (7.26 \ psig)^2 = 52.71 \ psig^2$$

Note that n = 9 (after data rejection), and standard deviation was computed with n - 1 samples.

Examination of the above results indicates that the mean, standard deviation, and variance decrease following data reduction.

Let's study implications of these results...

Solution

Present the computations and the intermediate results in Tabular form. See Table 1.

i	\boldsymbol{x}_i	BEFORE	DATA REJ	AFTER DATA REJ		
READING	PRESSURE	$d_i = x_i - x$	$f_m d_i^2$	d_i	d_i^2	
No.	(psig)	(psig)	(psig ²)	(psig)	(psig ²)	
1	100	-13	169	-10.56	111.51	
2	105	-8	64	-5.56	30.91	
3	105	-8	64	-5.56	30.91	
4	110	-3	9	-0.56	0.31	
5	110	-3	9	-0.56	0.31	
6	110	-3	9	-0.56	0.31	
7	115	2	4	4.44	19.71	
8	115	2	4	4.44	19.71	
9	125	12	144	14.44	208.51	
10	135	22	484	Rejected	Rejected	
	$\overline{\Sigma x_i = 1130}$		$\overline{\Sigma d_i^2 = 960}$	Σ	$d_i^2 = 422.19$	

Table 1. Procedure for computation of statistics

Bias and precision errors

Measured value, x_m

Standard normal probability distribution function (PDF) (aka. normalized Gaussian function)

	Second Decimal Place in z									
z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998
3.5	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998
3.6	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.7	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.8	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.9	0.5000*									

Standard normal PDF: tabulated area

Recall that:

$$z = \frac{x - \mu}{\sigma}$$

From: Beckwith, et. al.

Mechanical Engineering Department

Use of the standard normal PDF

Example 3.2 (Beckwith):

- What is the area under the curve between z = -1.43 and z = 1.43
- What is the significance of this area?

Solution:

- From Table 3.2 (Beckwith), ¹/₂ area is 0.4236. Total area is: 0.8472;
- Significance: 84.72 % of the population falls between the "normal" values of z = -1.43 and z = 1.43

Use of the standard normal PDF

Example 3.3 (Beckwith):

• What range of x will contain 90 % of the data

Solution:

- Find z such that 90/2 = 45 % of the data lie between zero and z.
- Second 45 % will lie between z and zero;
- Using interpolation: $z_{0.45} \approx 1.645$.

• Since
$$z = (x - \mu)/\sigma$$
:

 $(\mu - z_{0.45} \sigma) < x < (\mu + z_{0.45} \sigma)$ $(\mu - 1.645 \sigma) < x < (\mu + 1.645 \sigma)$

Consider the problem of measuring the electrical resistance of a component (as done in Lab #1); governing equation to use is:

$$R = \frac{V}{I}$$

Recall that parameters are determined as: $V \pm \delta V$,

 $I \pm \delta I$

Therefore, R will be recovered as: $R \pm \delta R$

How do we determine δR ?

Governing equation to use is:

$$R = \frac{V}{I}$$

Phenomenological equation is, therefore, R = R(V, I)

Square-root of the sum-of-the squares (RSS) approach indicates that the uncertainty, δR , in R, can be determined as

$$\delta R = \left[\left(\frac{\partial R}{\partial V} \delta V \right)^2 + \left(\frac{\partial R}{\partial I} \delta I \right)^2 \right]^{1/2}$$

Uncertainty in measured voltage is: δV Uncertainty in provided voltage is: δI

Individual partial derivates are: $\frac{\delta R}{\partial V} = \frac{1}{I}; \quad \frac{\delta R}{\partial I} = -\frac{V}{I^2}$

Substitute:

$$\delta R = \left[\left(\frac{1}{I} \delta V \right)^2 + \left(-\frac{V}{I^2} \delta I \right)^2 \right]^{1/2}$$

Normalized uncertainty is:

$$\frac{\delta R}{R} = \left[\left(\frac{1}{V} \delta V \right)^2 + \left(-\frac{1}{I} \delta I \right)^2 \right]^{1/2}$$

Problem: estimate uncertainty and normalized uncertainty in measurements of electrical resistance (as done in Lab #1).

Assume: (a) measuring range [-10,10] V; (b) 12-bit digitization; (c) measured voltage of 0.11 V; (d) I = 1 mA; half the least significant digit for δI ; (e) determine $R \pm \delta R$

<u>Discuss your results</u>.

Consider the problem of measuring the electrical resistance of a component (as done in Lab #1); governing equation used to determine R_2 is:

