### WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

#### Engineering Experimentation ME-3901, D'2012

Laboratory #5 26 April 2012





General information Office hours

<u>Instructors</u>: Cosme Furlong Office: HL-151 <u>Everyday</u>: 9:00 to 9:50 am Christopher Scarpino Office: HL-153 During laboratory sessions

<u>Teaching Assistants</u>: During laboratory sessions





### General information

"Laboratory 5: Thermocouple Calibration"

Objectives:

- Perform calibration of a thermocouple
- Record temperature-time data
- Evaluate response time of a thermocouple (time-constant)





### Thermoelectricity (thermocouples)

Thermocouple voltage versus temperature for reference junctions at 0 °C



We'll be using a type T thermocouple, which should not be used above 350° C since copper will oxidize rapidly above this limit.

Constantan is an alloy of copper and nickel with a typical composition Cu57Ni43 plus the addition of small percentages of Mn and Fe.

# Use the provided thermocouple wire to solder a thermocouple

Make sure the wires are securely connected to the alligator clips of the NI USB-6229







### Download and modify the provided VI to read temperature

### (Suggested Block diagram)







### Download and modify the provided VI to read temperature (Suggested Block diagram)



Use equation of a line.

<u>For calibration</u>: set slope to 1 and offset to zero





### Configure your Thermocouple Channel through DAQ Assistant







### Configure your Thermocouple Channel through DAQ Assistant

| -Channel S | settings                       |                           |
|------------|--------------------------------|---------------------------|
| + X        | Details እ 🛆                    | 7                         |
|            | Voltage                        | Settings                  |
| l d        | Iex Thermistor                 |                           |
| l d        | RTD                            |                           |
| 1          | Thermocouple                   |                           |
| 1ª         | Vex Thermistor                 |                           |
| *          | Strain                         |                           |
| •          | Current                        |                           |
| -<br>      | Resistance                     |                           |
| k          | Frequency                      |                           |
|            | LVDT                           |                           |
| <u>ا</u> ا | RVDT                           |                           |
| -99        | Acceleration                   |                           |
| —Timir 장   | Custom Voltage with Excitation |                           |
| Acqu 🔮     | Sound Pressure                 | Samples to Read Rate (Hz) |
| - ÷        | Eddy Current Proximity Probe   |                           |





# Make sure you have connected a **type-T** thermocouple to the NI USB-6229(channel 0 in this example)

| Temperature                                                               | Thermocouple Setup                                                                                                  |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Click the Add Channels button<br>(+) to add more channels to<br>the task. | Sional Input Rance<br>Max 100 deg C<br>Min 0 deg C<br>Thermocouple Type<br>T<br>CJC Source CJC Value<br>Constant 25 |
| Acquisition Mode                                                          | Samples to Read Rate (Hz)                                                                                           |





# Make sure you configure the timer so that it records the time properly without resetting







## Proceed to calibrate thermocouple with respect to a thermometer: "hot" and "cold" baths







# Calibrate by subjecting the thermocouple to two known temperatures: "hot" and "cold" baths







Once you have two calibration readings calculate the slope and the offset for linear approximation calibration and modify the VI to use the calibration constants







### Time Constant

#### **Definition**:

One time-constant is the time for a system to reach 63.2% of the nominal <u>differential</u> value/state (see lecture notes)





Mechanical Engineering Departmen

Procedure to Calculate the Time-constant (1)

(e.g., time for a system to reach 95% the nominal value)

- Increase sampling rate to 1000 Hz (also adjust the recorded number of samples to record long enough time)
- Insert the thermocouple in the cold junction. After stabilization, mean of a few points ( $\approx\!100$ ) of the cold water bath is referred to as  $T_{cold.}$
- Move the thermocouple junction from the cold to the hot junction while taking measurements. Continue measuring till the variations between nearby values is lesser than the resolution of the system.
- After stabilization, mean of a few points (≈100) of the hot water bath is referred to as T<sub>hot</sub>.





Procedure to Calculate the Time-constant (2)

(e.g., time for a system to reach 95% the nominal value)

- 95% of the transition is calculated as:
- T<sub>95%</sub> = T<sub>cold</sub>+ 0.95(T<sub>hot</sub> -T<sub>cold</sub>); compute also T<sub>63.2%</sub> (corresponding to <u>one time constant</u>)
- In Mathcad:
  - import the two columns time(t) and temperature(T).
  - Use function expfit() to fit an exponential curve between t and T with guess values, e.g., A, b and C = 34.0,-3.0 and 2.0 respectively.
  - Calculate the values of temperature(T\_calc) for each time instant and plot both the curves to verify.
- The Mathcad file has been included for your reference





### Procedure to Calculate the Time-constant (3)

### How to create a table in Mathcad



Select a cell and right-click to import data from your excel file for the variables time(t) and temperature(T)





### Suggested procedure to calculate the time-constant (4)





### Procedure to Calculate the Time-constant (5) Time response computations:

(1) Determine the time-constant,  $t_{\tau}$  , of the thermocouple with

$$T(t_{\tau} + t_0) = T_{63.2\%}$$

(Use exponential response function and solve for  $\,t_{\tau}\,$  )

(2) Also determine  $t_R$  , which corresponds to  $T_{95\%}$  as

$$T\left(t_{R}+t_{0}\right)=T_{95\%}$$





#### Your results must include:

- Calibration function, e.g.,  $T_{true} = 1.0148 \cdot T_{uncalibrated} 0.1406^{\circ}C$
- Temperature data, e.g.,  $T_{cold} \pm \Delta T_{cold}$ ,  $T_{hot} \pm \Delta T_{hot}$ , etc
- Evaluated time-constant  $t_{\tau}$  and also  $t_{R}$  (include measured uncertainties)

#### Your lab reports are due on Tuesday, April 30th



