WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

Engineering Experimentation ME-3901, D'2010

Laboratory #4:

Vibration measurements:

Strain gauges + MEMS + Elastic Modulus

General information Office hours

<u>Instructors</u>: Cosme Furlong Office: HL-151 <u>Everyday</u>: 9:00 to 9:50 am Christopher Scarpino Office: HL-153 During laboratory sessions

<u>Teaching Assistants</u>: During laboratory sessions

General information

<u>Please refer to posted handouts:</u>

"Laboratory 4: vibration measurements"

Objectives

The objectives of this laboratory are to:

 use <u>two-different</u> types of motion transducers to measure the natural frequencies, damping characteristics, and elastic modulus of a cantilever

For each motion transducer, vibration data will be analyzed to:

- 1. Determine the vibration amplitude, velocity, and acceleration in various units of measure;
- 2. Determine natural frequencies;
- 3. Measure and express damping characteristics as logarithmic decrement and percentage of critical damping;
- 4. Compare measurements with analytical and/or computational models of a cantilever;
- 5. Determine elastic modulus of a cantilever via vibration measurements

Amplitude (position), velocity, acceleration functions

• Recall that for a <u>position function</u> given by:

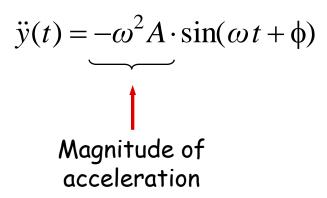
 $y(t) = A\sin(\omega t + \phi)$ [ω , rad/sec]

 $[f = \frac{\omega}{2\pi}, \text{Hz}]$

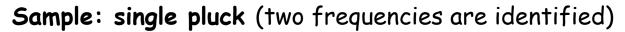
Velocity function is:

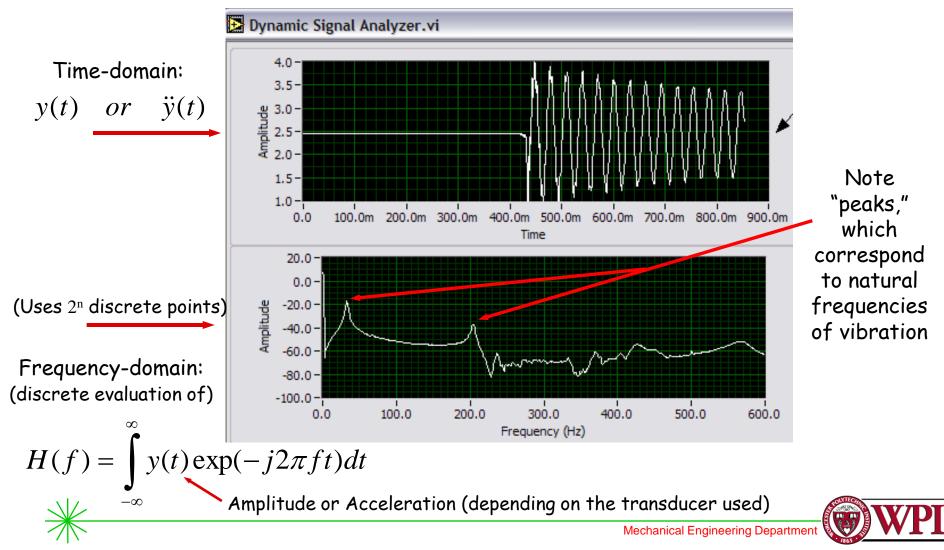
$$\dot{y}(t) = \omega A \cdot \cos(\omega t + \phi)$$

Acceleration function is:



Frequency-time domain: dynamic signal analyzer

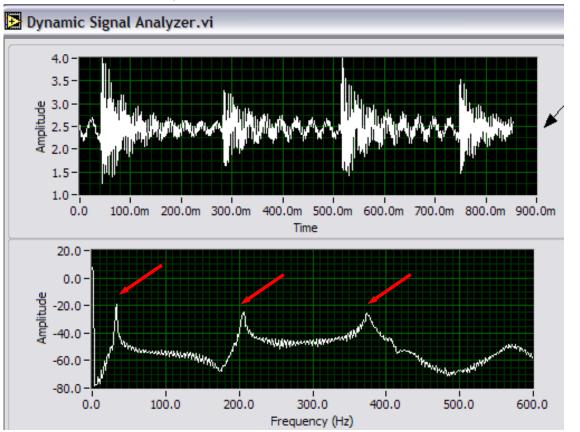




Frequency-time domain: dynamic signal analyzer

Sample: rapid plucking

(increases frequency resolution, three frequencies are identified)



Do these frequency "peaks" correspond to bending, torsion, or in-plane modes of vibration?

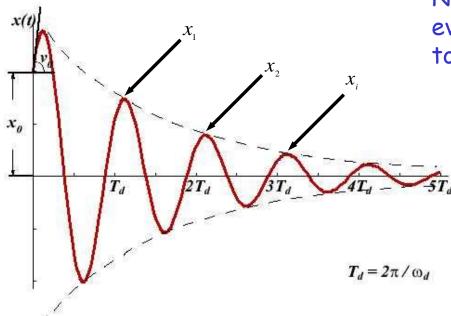
Please identify, if possible.

Hint: see equations that predict bending frequencies

Analysis of a single degree of freedom system First case: F(t) = 0 - Free vibrations

 $\lambda^2 - \omega^2 < 0$ Under-damped system

Logarithmic decrement: $\delta = \ln \frac{x_1}{x_2} = \ln \frac{x_i}{x_{i+1}}$



Note that you need to evaluate δ multiple times to obtain: $\overline{\delta} \pm \Delta \delta$

(including statistics and evaluated uncertainty)

Analysis of a single degree of freedom system First case: F(t) = 0 - Free vibrations

 $\lambda^{\scriptscriptstyle 2} - \omega^{\scriptscriptstyle 2} < 0 \qquad \text{Under-damped system}$

Logarithmic decrement:

$$\delta = \ln \frac{x_1}{x_2} = \ln \frac{e^{-\zeta \,\omega_n t_1} \sin(\sqrt{1 - \zeta^2} \,\omega_n \,t_1 + \phi)}{e^{-\zeta \,\omega_n (t_1 + T_d)} \sin[\sqrt{1 - \zeta^2} \,\omega_n \,(t_1 + T_d) + \phi]}$$

$$\delta = \ln \frac{x_1}{x_2} = \ln \frac{e^{-\zeta \,\omega_n t_1}}{e^{-\zeta \,\omega_n (t_1 + T_d)}} = \ln e^{\zeta \,\omega_n T_d} = \zeta \,\omega_n T_d$$

Recall that:
$$T_d = \frac{2\pi}{\omega_d} = \frac{2\pi}{\omega_n \sqrt{1-\zeta^2}} \implies \qquad \delta = \frac{2\pi \zeta}{\sqrt{1-\zeta^2}}$$

(account for measured uncertainty in δ)

You can determine damping ratio with knowledge of $\boldsymbol{\delta}$

$$\zeta = \frac{b}{b_c}$$
 (Damping ratio - percentage of critical damping)

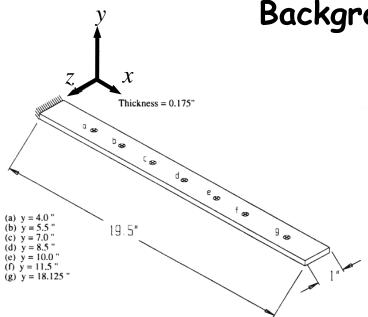


Fig. 3 Low carbon steel beam showing locations of interest

Note: first frequency can also be expressed as

$$\omega_n = 1.015 \sqrt{\frac{E}{\rho}} \left(\frac{t}{L^2}\right)$$
, rad/s

Background: cantilevers

Natural frequencies

First:
$$\omega_n = 3.5160 \sqrt{\frac{EI}{mL^4}}$$
, rad/s (3)

where,

E = Young's modulus = 30×10^6 psi, I = Moment of inertia of the beam section = 4.46614×10^{-4} in⁴, \overline{m} = mass per unit of length = 1.26805×10^{-4} lbf·s²/in², and

L =length of the beam = 19.5 in,

Second:
$$\omega_n = 22.0345 \sqrt{\frac{\text{EI}}{\overline{\text{mL}}4}}$$
, (4)

Third:
$$\omega_n = 61.6972 \sqrt{\frac{EI}{mL^4}}$$
, (5)

Fourth:
$$\omega_n = 120.0902 \sqrt{\frac{\text{EI}}{\text{mL}^4}}$$
, (6)

Fifth:
$$\omega_n = 199.8600 \sqrt{\frac{\text{EI}}{\text{mL}^4}}$$
, (7)

$$EI\frac{\partial^4 y}{\partial x^4} + \overline{m}\frac{\partial^2 y}{\partial t^2} = 0 \quad . \tag{8}$$

Table 4.	Natural	Frequencies	obtained	using	Eq. 3 to	7
----------	---------	-------------	----------	-------	----------	---

Natural Frequency	Magnitude, Hz 15.1270		
1			
2	94.8010		
3	265.446		
4	516.675		
5	859.876		

Recovery of elastic modulus from vibration measurements

Assume the use of the fundamental frequency (higher frequencies can also be used):

$$\omega_n = 1.015 \sqrt{\frac{E}{\rho} \left(\frac{t}{L^2}\right)}$$
, rad/s

Solve for the elastic modulus, E, at a <u>measured</u> ω_n :

 $E = E(\omega_n, \rho, t, L)$ Note: take multiple measurements at different beam lengths

Note that uncertainty analysis is necessary:

$$\delta E = \delta E(\omega_n, \rho, t, L)$$

Make note on:

Measuring resolutions/sensitivities obtained with MEMS & Strain gauges

