WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

Engineering Experimentation ME-3901, D'2012

Laboratory #4:

Vibration measurements with MEMS

General information Office hours

<u>Instructors</u>: Cosme Furlong Office: HL-151 <u>Everyday</u>: 9:00 to 9:50 am Christopher Scarpino Office: HL-153 During laboratory sessions

<u>Teaching Assistants</u>: During laboratory sessions

General information

Please refer to posted handouts:

"Laboratory 4: vibration measurements"

"Analog Devices: Single and dual Axis Automotive *i*MEMS"

Objectives

The objectives of this laboratory are to:

 use <u>two-different</u> types of motion transducers to measure the natural frequencies, damping characteristics, and elastic modulus of a cantilever

For each motion transducer, vibration data will be analyzed to:

- 1. Determine the vibration amplitude, velocity, and acceleration in various units of measure;
- 2. Determine natural frequencies;
- 3. Measure and express damping characteristics as logarithmic decrement and percentage of critical damping;
- 4. Compare measurements with analytical and/or computational models of a cantilever;
- 5. Determine elastic modulus of a cantilever via vibration measurements

Fig. 3 Low carbon steel beam showing locations of interest

Note: Frequencies can also be expressed as

$$\omega_n = \beta_n \frac{1}{\sqrt{12}} \sqrt{\frac{E}{\rho}} \left(\frac{t}{L^2}\right)$$
, rad/s

Background: cantilevers

Natural frequencies

First:
$$\omega_n = 3.5160 \sqrt{\frac{\text{EI}}{\text{mL}^4}}$$
, rad/s (3)

where,

E = Young's modulus = 30×10^6 psi, I = Moment of inertia of the beam section = 4.46614×10^{-4} in⁴, \overline{m} = mass per unit of length = 1.26805×10^{-4} lbf·s²/in², and

L =length of the beam = 19.5 in,

Second:
$$\omega_n = 22.0345 \sqrt{\frac{\text{EI}}{\overline{\text{mL}}^4}}$$
, (4)

Third:
$$\omega_n = 61.6972 \sqrt{\frac{EI}{mL^4}}$$
, (5)

Fourth:
$$\omega_n = 120.0902 \sqrt{\frac{\text{EI}}{\text{mL}^4}}$$
, (6)

Fifth:
$$\omega_n = 199.8600 \sqrt{\frac{\text{EI}}{\overline{\text{mL}}^4}}$$
, (7)

$$EI\frac{\partial^4 y}{\partial x^4} + \overline{m}\frac{\partial^2 y}{\partial t^2} = 0 .$$
 (8)

Table 4. Natura	Frequencies	obtained	using	Eq.	3 to	7
-----------------	-------------	----------	-------	-----	------	---

Natural Frequency	Magnitude, Hz	
1	15.1270	
2	94.8010	
3	265.446	
4	516.675	
5	859.876	

 \ast

MEMS accelerometers

- In this laboratory Analog Devices ADXL276 (AD22237) dual-axes accelerometer will be utilized.
- The ADXL276 MEMS accelerometer is currently being used in a wide range of consumer, industrial, military, and automotive applications.
- The ADXL276 accelerometer has a measuring range of ± 35 g (g = 9.81 m/s²) and it provides analog output signals with sensitivity on the order of 55 mV/g.
- It requires 3 V to 5.25 V for operation and is capable of operating in a wide range of temperatures.
- Provides ~ 2.4 V output at zero-g (no motion)

MEMS accelerometers

ADXL276 (AD22237) dual-axes accelerometer

MEMS accelerometers

ADXL276 (AD22237): sensitivity axes

ADXL276 (AD22237): specifications sheet (you have copy)

ADXL76, ADXL269, ADXL276–SPECIFICATIONS (@ $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_5 = 5 V \pm 5\%$, Acceleration = 0 g; unless otherwise noted)

		ADXLxxQx			ADXLxxQx			ADXLxxQx			
Parameter	Conditions	Min	18 [.] Тур	Max	Min	38' Typ	Max	Min	55' Тур	Max	Unit
SENSOR Guaranteed Full-Scale Range Nonlinearity Package Alignment Error ³ Sensor-to-Sensor Alignment Error Transverse Sensitivity ⁴	ADXL76 Only, Offset Adjusted ² ADXL76 Only, Offset Adjusted ADXL276, ADXL269	±115 ±105			±50 ±45	0.2 ±1 0.1 ±2		±35 ±30			g g g Degrees Degrees %
SENSITIVITY Sensitivity Sensitivity Tolerance ^{5, 6} Temperature Drift	Ratiometric From 25°C to T _{MIN} to T _{MAX}		18		-8	38 ±0.5	+8		55		mV/g %
ZERO-g OFFSET LEVEL Output Zero-g Voltage ^{6, 7} Temperature Drift	Offset from V _S /2 From 25°C to T _{MIN} to T _{MAX}	-198	3.6	+198	-418	7.6	+418	-605	11	+605	mV mV
ZERO-g' ADJUSTMENT Voltage Gain Input Resistance Input Resistor Network Ratio %:1	$\Delta V_{OUT}/\Delta V_{ADJ~PIN}$				0.45 20	0.5 30 ±0.1	0.55 40				V/V kΩ %
NOISE PERFORMANCE Noise Density Clock Noise	10 Hz to Nominal Bandwidth See Figure 18		4	12		1 5	3		1	3	mg∕√ Hz mV p-p
FREQUENCY RESPONSE -3 dB Frequency ⁸ Bandwidth Temperature Drift Sensor Resonant Frequency	Bandwidth Options: See Orderin Q = 5	g Guide			-10	20 24	+10				% Hz kHz
SELF-TEST [®] Output Change Logic "1" Voltage Logic "0" Voltage Input Resistance	@ 5 V To GND	135	180	270	285 3.5 30	380 50	570 1.0	413	550	825	mV V V kΩ
OUTPUT AMPLIFIER Output Voltage Swing Capacitive Load Drive	$\begin{split} I_{\rm OUT} &= +100 \ \mu A \\ I_{\rm OUT} &= -100 \ \mu A \end{split}$				V _S -0.	25	0.25				V V pF
POWER SUPPLY (V _S) Operating Voltage Range Functional Voltage Range Quiescent Supply Current	ADXL76, ADXL276, ADXL269				4.75 4.0	18 3.5	5.25 6.0 3 5				V V mA mA
TEMPERATURE RANGE ¹⁰					-40		+85				°C

NOTES

¹For example: ADXLxxQx38 describes devices with a nominal sensitivity of 38 mV/g. See Ordering Guide for full part number.

³Trimmed at the factory to user specifications. May require 0-g adjust circuitry. Reference section on Zero-g Adjustment and Dynamic Range. ³Alignment error is specified as the angle between the true axis of sensitivity and the edge of the package.

*Transverse sensitivity is measured with an applied acceleration that is 90 degrees from the indicated axis of sensitivity.

 5 Ratiometric: V_{OUT} (accel, V_{S}) = $[V_{S}/2 \pm (a V_{S}/5 V)] + [(accel)(b V_{S} + c V_{S}^{2})(1 \pm 0.08)]$ where a = offset range in volts. For a 38 mV/g sensor: b = 5.725 × 10⁻³ 1/g, c = 0.375 × 10⁻³ 1/ 10⁻³ 1/g/V. (For a 55 mV/g sensor: b = 8.284 × 10⁻³ 1/g, c = 0.542 × 10⁻³ 1/g/V. See Figures 5 and 13. Spec includes temperature drift, life drift, and nonlinearity. Test conditions: 100 Hz, ±50 g for the 38 mV/g and 18 mV/g sensor; 100 Hz ± 35 g for the 55 mV/g sensor.

⁶Error included in full-scale range specification.

⁷Proportional to V_S/2. See Figures 6 and 19.

8Includes Temperature Drift.

⁹ST pin from Logic "0" to "1." For the ADXL76: V_{OUT} change = (V_{OUT} change @ 5 V) × (V₅/5 V). For the ADXL269 and the ADXL276: V_{OUT} change @ W_{OUT} change @ $5 \text{ V}) \times (V_S/5 \text{ V})^3$

10A higher temperature range available.

Specifications subject to change without notice.

ADXL276 (AD22237): specifications sheet (you have copy)

Standard Devices	Part Number	Sensitivity [mV/g]	Bandwidth (-3 dB) [Hz]	Package Description*	Package Option	
ADXL76Q38	AD22215	38	400	Ceramic Dual-In-Line	Q-8	
ADXL76QC38	AD22227	38	400	Surface Mount Ceramic	OC-14	
ADXL76QC38-1	AD22229	38	1000	Surface Mount Ceramic	OC-14	
ADXL76Q55	AD22224	55	400	Ceramic Dual-In-Line	0-8	
ADXL76QC55	AD22226	55	400	Surface Mount Ceramic	OC-14	
ADXL276QC38	AD22235	38	400	Surface Mount Ceramic	OC-14	
ADXL276QC38	AD22239	38	400X; 1000Y	Surface Mount Ceramic	OC-14	
ADXL276QC55	AD22237	(55)	(400)	Surface Mount Ceramic	QC-14	

Part number: ADXL276 (AD22237)

Standard Devices	Part Number	Sensitivity [mV/g]	Bandwidth (-3 dB) [Hz]	Package Description*	Package Option	
ADXL76QC18 ADXL76Q38-1 ADXL269QC38 ADXL269QC55 ADXL276QC38-1 ADXL276QC	AD22228 AD22269 AD22236 AD22204 AD22204	18 38 38 55 38 38X; 70Y	400 1000 400 400 1000 400	Surface Mount Ceramic Ceramic Dual-In-Line Surface Mount Ceramic Surface Mount Ceramic Surface Mount Ceramic Surface Mount Ceramic	QC-14 Q-8 QC-14 QC-14 QC-14 QC-14	

*Contact factory for availability.

NOTE: Surface mount packages are shipped taped and reeled with a full reel quantity of 750 pieces. Dual-in-line packages are shipped in tubes (45 pieces per tube), 1080 pieces per box. Samples for preproduction development can be shipped in less than full box or full reel quantities.

MEMS accelerometers: wiring

ADXL276 (AD22237): wiring

We will be using only one axis (why?)

MEMS accelerometers:wiring

ADXL276 (AD22237): wiring. Use strain gage wire <u>We will be using only one axis</u>

MEMS accelerometers: mounting

ADXL276 (AD22237): wiring. Use strain gage wire <u>Use "super-glue" to attach accelerometer - secure wires w/tape</u>

MEMS accelerometers: powering

output: 5 V DC OUTPUT FILTER AUTO BAL Ó MONITOR

Excitation

MEMS accelerometers: analog output

Tasks: MEMS accelerometers

- Pluck the end of the cantilever and record the vibration decay curve;
- Use and modify suitable LabView VIs to record time-frequency data;
- Using the recorded data, determine modal parameters of the cantilever (i.e., natural frequencies and damping factors);
- Compare your results with analytical/computational models of a cantilever; and
- Do uncertainty analysis on the determined modal parameters (including % contribution of uncertainties).

Record time & frequency data

One recommended VI (available in our website)

🔛 Lab4_Vib_Sid_P1_D08.vi Front Panel '

File Edit View Project Operate Tools Window Help 수 🗞 🛑 🔢 13pt Application Font 🛛 🗸 🚛 🖼 🖏 🤇 2 Voltage (Power Spectrum) lency Spectrun 0.0001-9E-5-8E-5-7E-5-6E-5-Frequency-domain 5E-5-4E-5-3E-5-(Obtained by applying the 🔶 Þ 2E-5-1E-5-"Fast Fourier 20 25 45 50 55 60 65 35 40 70 75 80 90 95 Frequency (Hz) Transformation (FFT)" on Time Series Voltage 📈 the time-domain data) 0.9-0.8-0.7-0.6-0.5-0.4-Time-domain data 0.3-0.2-0.1-(Obtained by h White And A Construction 0 --0.1plucking the beam) -0.2--0.3--0.4-2.5 3 3.5 4 4.5 6 6.5 ż 7.5 8 8.5 9 9.5 0.5 1.5 5.5

Modify to add suitable controls, shown here

Modify to add suitable functionality, shown here (while loop and write data into file)

Record time & frequency data

Another recommended VI (available in our website)

Frequency-time domain: dynamic signal analyzer

Sample: single pluck (two frequencies are identified)

Frequency-time domain: dynamic signal analyzer

Sample: rapid plucking

(increases frequency resolution, three frequencies are identified here)

Do these frequency "peaks" correspond to bending, torsion, or in-plane modes of vibration?

Please identify, if possible.

Hint: see equations that predict bending frequencies

Make note on:

Measuring resolutions/sensitivities obtained with MEMS & Strain gauges

