WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

Engineering Experimentation ME-3901, D'2012

Laboratory #4: Part 1

Vibration measurements with strain gauges

General information Office hours

<u>Instructors</u>: Cosme Furlong Office: HL-151 <u>Everyday</u>: 9:00 to 9:50 am Christopher Scarpino Office: HL-153 During laboratory sessions

Teaching Assistants: During laboratory sessions

General information

<u>Please refer to laboratory description:</u> "Laboratory 4: vibration measurements"

Objectives

The objectives of this laboratory are to:

 use different types of motion transducers to measure the natural frequencies, damping characteristics, and elastic modulus of a cantilever

For each motion transducer, vibration data will be analyzed to:

- 1. Determine the vibration amplitude, velocity, and acceleration in various units of measure;
- 2. Determine natural frequencies;
- 3. Measure and express damping characteristics as logarithmic decrement and percentage of critical damping;
- 4. Compare measurements with analytical and/or computational models of a cantilever;
- 5. Determine elastic modulus of a cantilever via vibration measurements

Fig. 3 Low carbon steel beam showing locations of interest

Show demo: modal analysis with FEM

Note: Frequencies can also be expressed as

$$\omega_n = \beta_n \frac{1}{\sqrt{12}} \sqrt{\frac{E}{\rho}} \left(\frac{t}{L^2}\right)$$
, rad/s

Background: cantilevers

Natural frequencies

First:
$$\omega_n = 3.5160 \sqrt{\frac{EI}{mL^4}}$$
, rad/s (3)

where,

E = Young's modulus = 30×10^6 psi, I = Moment of inertia of the beam section = 4.46614×10^{-4} in⁴, \overline{m} = mass per unit of length = 1.26805×10^{-4} lbf·s²/in², and

L =length of the beam = 19.5 in,

Second:
$$\omega_n = 22.0345 \sqrt{\frac{\text{EI}}{\overline{\text{mL}}^4}}$$
, (4)

Third:
$$\omega_n = 61.6972 \sqrt{\frac{EI}{mL^4}}$$
, (5)

Fourth:
$$\omega_n = 120.0902 \sqrt{\frac{\text{EI}}{\text{mL}^4}}$$
, (6)

Fifth:
$$\omega_n = 199.8600 \sqrt{\frac{\text{EI}}{\text{mL}^4}}$$
, (7)

$$EI\frac{\partial^4 y}{\partial x^4} + \overline{m}\frac{\partial^2 y}{\partial t^2} = 0 .$$
 (8)

Table 4.	Natural	Frequen	cies obta	ined using	Eq. 3	8 to 7
----------	---------	---------	-----------	------------	-------	--------

Natural Frequency	Magnitude, Hz		
1	15.1270		
2	94.8010		
3	265.446		
4	516.675		
5	859.876		
	Natural Frequency 1 2 3 4 5	Natural Frequency Magnitude, Hz 1 15.1270 2 94.8010 3 265.446 4 516.675 5 859.876	

Strain gauges Tasks

- Derive analytical solutions to determine:
 - a. Stresses and strains of a cantilever subjected to a concentrated load;
 - b. Fundamental natural frequencies and damping factors of a cantilever;
- Using a C-clamp, mount cantilever to the edge of a bench. Attach one strain gauge on the cantilever -- make sure to attach gauge at a location subjected to as much strain level as possible; check your analytical solutions;
- Calculate the necessary output gain for the gauge; use a 10 V bridge excitation; recommended filter level is 100; setup an analog input channel to the range of [-2,2] Volts;
- To determine an appropriate output gain consider loading the beam under static situation and with a known load;

Vibration measurements with strain gauges

Strain gauges Tasks

- Use/modify/construct suitable LabView VI(s) to record time & frequency data;
- Pluck the end of the cantilever and record the vibration decay curve;
- Using the recorded data, determine modal parameters (i.e., natural frequencies and damping factors) and elastic modulus of the cantilever;
- Compare your results with analytical/computational models of a cantilever; and
- Do uncertainty analysis on the determined modal parameters and elastic modulus (including % contribution of uncertainties).

Vibration measurements with strain gauges and a VI

Vibration measurements with strain gauges and a VI

- You can construct a suitable LabView VI (to be shown next); or
- You can use and modify an existing LabView VI (available in our website).

Example time & frequency domains VI Let's build it !

Setting up the DAQ assistant (1)

Open a new VI project & set one AI channel

Create New Express Task				
NI-DAO DAQ Assistant				
Select the measurement type for the task. A task is a collection of one or more virtual channels with timing, triggering, and other properties. To have <u>multiple measurement types</u> within a single task, you must first create the task with one measurement type. After you create the task, click the Add Channels button to add a new measurement type to the task.		 Acquire Signals Generate Signals 		
		< Back Next >	Finish Cancel	

Setting up the DAQ assistant (2)

Setting up the DAQ assistant (3)

Adding spectral measurements tool to block diagram

Settings in the spectral measurements tool

Can be modified later, if necessary

Add controls, graphs, and wire as shown

Modify to add suitable controls, shown here

Modify to add suitable functionality, shown here (while loop and write data into file)

Setting up the hardware (1): attaching strain gauge

Setting up the hardware (2): clamping

Setting up the hardware (3): bridge completion

Term. Strain Gag		
Red		Red
White		White
Blue		Black

Setting up the hardware (4): read amplified signal

BNC cable from 2310's output (see ±10 terminal)

You can try another VI - available in our website

(enabled with writing to file capabilities)

You can try another VI – available in our website (enabled with writing to file capabilities)

Basic principle of accelerometers

• Recall that the RMS value of a function i(t) is calculated as:

$$I_{RMS} = \sqrt{\frac{1}{T} \int_{0}^{T} [i(t)]^2 dt}$$

• For a pure sinusoidal function with zero offset:

$$I_{RMS} = \sqrt{\frac{1}{2\pi} \int_{0}^{2\pi} [I_{p} \sin(\omega t)]^{2} dt} = \sqrt{\frac{I_{p}^{2}}{2\pi} \int_{0}^{2\pi} \sin^{2}(\omega t) dt}$$

$$I_{RMS} = \frac{I_p}{\sqrt{2}}$$

Basic principle of accelerometers

• Also, recall that for a <u>position function</u> given by:

$$y(t) = A\sin(\omega t + \phi)$$
 [ω , rad/sec]
[$f = \frac{\omega}{2\pi}$, Hz]

Velocity function is:

$$\dot{y}(t) = \omega A \cdot \cos(\omega t + \phi)$$

Acceleration function is:

