WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

Engineering Experimentation ME-3901, D'2012

Laboratory #3: Part 3 of 3

General information

Office hours

<u>Instructors</u>: Cosme Furlong Office: HL-151 <u>Everyday</u>: 9:00 to 9:50 am Christopher Scarpino Office: HL-153 During laboratory sessions

<u>Teaching Assistants</u>: During laboratory sessions

General information

<u>Please refer to handout:</u> "Laboratory 3: Strain Measurements"

(consider doing "screenshots" of the experiment for your report) Longitudinal stress: $\sigma_{Long} = \frac{P \cdot r}{2t}$

Stress-strain relationship:

Hoop stress: $\sigma_{Hoop} = \frac{P \cdot r}{t}$

$$\varepsilon_{Hoop} = \frac{\sigma_{Hoop} - \nu \cdot \sigma_{Long}}{E}$$

Internal pressure of "can":

General information

<u>Please refer to handout:</u> "Laboratory 3: Strain Measurements"

(consider doing "screenshots" of the experiment for your report) Make sure to:

- Estimate maximum strain level to expect (use [30-50] psi as initial values). Are gain and excitation levels appropriate? What measurement resolution is expected?
- Start with a balanced bridge
- Verify output with shunt resistors
- Using shunt resistors, write data into file (are pressure and stress levels appropriate)?
- Do your tests

Strain gages

Definition of gage factor:
$$F = \frac{dR/R}{\varepsilon_a}$$

(From lecture notes) $\Rightarrow F = 1 + 2\mu + \frac{1}{\varepsilon_a} \frac{d\rho}{\rho}$

If <u>resistivity</u> does not change \Rightarrow $F = 1 + 2\mu$

And strain with change of resistance is:

$$\implies \quad \varepsilon_a = \frac{1}{F} \frac{\Delta R}{R}$$

A typical strain gage has a gage factor $\approx 2.095\pm0.5\%.$ Why? How is this possible? Open for discussions

Strain gages and a Wheatstone bridge

Recall from previous discussions:	ΔE	ΛR	ΛR
(Changes in resistance & output voltage)	$\frac{\Delta L_g}{E}$	$\approx \frac{\Delta R_4}{4R} =$	

And strain with change of resistance is:

$$\Rightarrow \quad \varepsilon_a = \frac{1}{F} \frac{\Delta R}{R}$$

We want to recover strain from voltage measurements. Combine previous equations:

$$\Rightarrow \quad \varepsilon_a = \frac{1}{F} \frac{4\Delta E_g}{E}$$

Strain gages and a Wheatstone bridge We need to amplify output signal: determine gain

Re-write previous equation as: $\Delta E_g = \frac{F}{\Delta} \cdot E \cdot \varepsilon_a$

Assume the following values: (based on an actual setup)

$$E = 10 \pm 0.005 V$$

 $F = 2.095 \pm 0.5\%$

Also, assume the measurement of only 1 μstrain (εμ):

 $\varepsilon_a = 1 \,\mu \text{strain} = 1 \times 10^{-6}$

$$\Delta E_g = 5.238 \times 10^{-6} V$$

Is it possible to measure this voltage level in HL-031? Open for discussions

Strain gages and a Wheatstone bridge We need to amplify output signal: determine gain

Assume that measurement resolution of DAQ system is: (please, update accordingly, while taking into account max./min. voltages allowed in the DAQs input)

```
1 \times 10^{-3} V
```

(i.e., 1 mV per 1 µstrain)

Gain for the <u>output signal</u> should be:

$$Gain = \frac{1 \times 10^{-3} V}{5.238 \times 10^{-6} V} \approx 191$$

If we use full range resolution of DAQs in HL-031, what is the range of strain values that can be measured?

Open for discussions

Note on strain gages design (typical: 0.001" thick)

Strain gage: temperature effects

Recall Lab #1: resistance as a function of temperature. Open for discussions

Strain gage selection

Measuring arm of the bridge

Equivalent resistance

$$\frac{1}{R} = \frac{1}{R_x} + \frac{1}{R_{cal}} \implies R = \frac{R_x \cdot R_{cal}}{R_x + R_{cal}}$$

Change in resistance is

$$\Delta R = R - R_x = \frac{R_x \cdot R_{cal}}{R_x + R_{cal}} - R_x$$
$$= -\frac{R_x^2}{R_x + R_{cal}}$$

Using the definition of a gage factor:

Example

If: $R_{cal} = 878,000 \Omega$; $R_x = 120 \Omega$ with F = 2.095

 $\Rightarrow \ \varepsilon_{cal} = -\frac{R_x}{F(R_x + R_{cal})} = -\frac{120}{2.095(120 + 878,000)} = -65.2 \times 10^{-6}$ $= -65.2 \,\mu \text{strain (compression)}$

Amplifier model 2310 in $\frac{1}{4}$ bridge configuration

- + A: 59.94 k $\Omega \implies \approx$ 954 μ strain
- + B: 174.8 k $\Omega \implies \approx$ 328 µstrain

(Make sure to verify these results)

Check + + - and $\epsilon_{\rm cal}$

+ A resistor

+ B resistor

Mechanical Engineering Department

<u>Finish lab</u>

Do not forget to include RSS uncertainty analysis of your pressure measurements

