WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

Engineering Experimentation ME-3901, D'2012

Laboratory #3: Part 3 of 3

General information

Office hours

Instructors: Cosme Furlong Christopher Scarpino Office: HL-151 Office: HL-153 **9:00 to 9:50 am sessions**

Everyday: During laboratory

Teaching Assistants: **During laboratory sessions**

General information

Please refer to handout: "Laboratory 3: Strain Measurements"

(consider doing "screenshots" of the experiment for your report) Hoop stress: *t Hoop* $\sigma_{Hoon} =$

Longitudinal stress: *t* $P \cdot r$ L ong $\overline{}$ 2 . $\sigma_{_{I\text{one}}} =$

 $P \cdot r$

 $\ddot{}$

Stress-strain relationship:

$$
\varepsilon_{\text{Hoop}} = \frac{\sigma_{\text{Hoop}} - v \cdot \sigma_{\text{Long}}}{E}
$$

Internal pressure of "can":

General information

Please refer to handout: "Laboratory 3: Strain Measurements"

(consider doing "screenshots" of the experiment for your report) Make sure to:

- Estimate maximum strain level to expect (use [30-50] psi as initial values). Are gain and excitation levels appropriate? What measurement resolution is expected?
- Start with a balanced bridge
- Verify output with shunt resistors
- Using shunt resistors, write data into file (are pressure and stress levels appropriate)?
- Do your tests

Strain gages

Definition of gage factor:
$$
F = \frac{dR/R}{\varepsilon_a}
$$

(From lecture notes)
$$
\Rightarrow
$$
 $F = 1 + 2\mu + \frac{1}{\varepsilon_a} \frac{d\rho}{\rho}$

If <u>resistivity</u> does not change \Rightarrow $F = 1 + 2\mu$

And strain with change of resistance is:

$$
\Rightarrow \varepsilon_a = \frac{1}{F} \frac{\Delta R}{R}
$$

A typical strain gage has a gage factor $\approx 2.095 \pm 0.5\%$. Why? How is this possible? Open for discussions

Strain gages and a Wheatstone bridge

And strain with change of resistance is:

$$
\Rightarrow \varepsilon_a = \frac{1}{F} \frac{\Delta R}{R}
$$

We want to recover strain from voltage measurements. Combine previous equations:

$$
\Rightarrow \varepsilon_a = \frac{1}{F} \frac{4\Delta E_g}{E}
$$

Strain gages and a Wheatstone bridge We need to amplify output signal: **determine gain**

Re-write previous equation as: $g = \frac{1}{4} \cdot E \cdot \varepsilon_a$ *F* $\Delta E_{\rho} = \frac{I}{I} \cdot E \cdot \varepsilon$ 4

Assume the following values: (based on an actual setup)

$$
E = 10 \pm 0.005 V
$$

$$
F = 2.095 \pm 0.5\%
$$

Also, assume the measurement of only 1 μ strain $(\epsilon \mu)$:

 $\varepsilon_a = 1 \,\mu$ strain $= 1 \times 10^{-6}$

Using these values leads to:

$$
\Delta E_g = 5.238 \times 10^{-6} \, V
$$

Is it possible to measure this voltage level in HL-031? Open for discussions

Strain gages and a Wheatstone bridge We need to amplify output signal: **determine gain**

Assume that measurement resolution of DAQ system is: (please, update accordingly, while taking into account max./min. voltages allowed in the DAQs input)

 $1 \times 10^{-3} V$

 $(i.e., 1 mV per 1 µstrain)$

Gain for the output signal should be:

$$
Gain = \frac{1 \times 10^{-3} \text{ V}}{5.238 \times 10^{-6} \text{ V}} \approx 191
$$

If we use full range resolution of DAQs in HL-031, what is the range of strain values that can be measured?

Open for discussions

Note on strain gages design (typical: 0.001" thick)

Strain gage: temperature effects

Recall Lab #1: resistance as a function of temperature. **Open for discussions**

Strain gage selection

Measuring arm of the bridge

Equivalent resistance

$$
\frac{1}{R} = \frac{1}{R_x} + \frac{1}{R_{cal}} \implies R = \frac{R_x \cdot R_{cal}}{R_x + R_{cal}}
$$

Change in resistance is

$$
\Delta R = R - R_x = \frac{R_x \cdot R_{cal}}{R_x + R_{cal}} - R_x
$$

$$
= -\frac{R_x^2}{R_x + R_{cal}}
$$

Using the definition of a gage factor:

Example

If: $R_{cal} = 878,000 \Omega$; $R_x = 120 \Omega$ with $F = 2.095$

 65.2×10^{-6} $2.095(120 + 878,000)$ 120 $(R_{r} + R_{cal})$ $=-65.2\times10^{-}$ $\ddot{}$ $=$ $\ddot{}$ \Rightarrow ε_{cal} = - \mathbf{x} **+** \mathbf{R}_{cal} *x* $cal - F = \frac{F(R_x + R_y)}{F(R_x + R_y)}$ *R* $=$ -65.2 ustrain (compression)

Amplifier model 2310 in $\frac{1}{4}$ bridge configuration

- $+$ A: 59.94 k $\Omega \Rightarrow \approx$ 954 µstrain
- $+ B: 174.8 \text{ k}\Omega \Rightarrow \approx 328 \text{ }\mu \text{strain}$

(Make sure to verify these results)

Check + + - and ε_{cal}

+ A resistor

+ B resistor

Finish lab

Do not forget to include RSS uncertainty analysis of your pressure measurements

