WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

Engineering Experimentation ME-3901, D'2012

Laboratory #3: Part 1

General information

Office hours

<u>Instructors</u>: Cosme Furlong Office: HL-151 <u>Everyday</u>: 9:00 to 9:50 am Christopher Scarpino Office: HL-153 During laboratory sessions

<u>Teaching Assistants</u>: During laboratory sessions

General information

"Laboratory 3: Strain and Pressure Measurement"

Objectives

The objectives of this laboratory are to:

- Perform characterization of internal pressure in a thinwalled tank by measurements of mechanical strains;
- Perform uncertainty analysis of characterized internal pressures with respect to parameters involved;
- Identify, in order of importance, percentage contribution of all uncertainties to the overall uncertainty in pressure characterizations;

Background

Review Hoop (tangential) and Longitudinal stresses in Thin-walled cylinders

Pressure transducer: Silicon diaphragm with Bridges

Pressure transducer: Silicon diaphragm. Resistive sensor

Hardware. Strain gages (typical: 0.001" thick)

Hardware. Strain gage: temperature effects

Recall Lab #1: resistance as a function of temperature. Open for discussions

Hardware. Strain gage selection

	CONSIDERATIONS FOR PARAMETER SELECTION			
Selection Step: 1 Parameter: Gage Length	 strain gradients area of maximum strain accuracy required static strain stability maximum elongation cyclic endurance heat dissipation space for installation ease of installation 			
Selection Step: 2 Parameter: Gage Pattern	 strain gradients (in-plane and normal to surface) biaxiality of stress heat dissipation space for installation ease of installation gage resistance availability 			
Selection Step: 3 Parameter: Gage Series	 type of strain measurement application (static, dynamic, post-yield, etc.) operating temperature test duration cyclic endurance accuracy required ease of installation 			
Selection Step: 4 Parameter: Options	 type of measurement (static, dynamic, post-yield, etc.) installation environment			
Selection Step: 5 Parameter: Gage Resistance	 heat dissipation leadwire desensitization signal-to-noise ratio 			
Selection Step: 6 Parameter: S-T-C Number	 test specimen material operating temperature range accuracy required 			

Hardware. Strain gage selection

GAGE SERIES				FATIGUE LIFE		
	DESCRIPTION AND PRIMARY APPLICATION	TEMPERATURE RANGE	STRAIN RANGE	Strain Level in $\mu\epsilon$	Number of Cycles	
EA	General-purpose static and dynamic stress analysis. Wide range of options available.	Normal: -100° to +350°F (-75° to +175°C) ±3% for gage le ±3% for gage le under 1/8 in (3. -320° to +400°F (-195° to +205°C) ±5% for 1/8 in (3.		±1800 ±1500 ±1200	10 ⁵ 10 ⁶ 10 ⁸	
CEA	Universal general-purpose strain gages. Con- stantan grid completely encapsulated in poly- imide, with large, rugged, copper-coated tabs. Primarily used for general-purpose static and dynamic stress analysis.	neral-purpose strain gages. Con- completely encapsulated in poly- arge, rugged, copper-coated tabs. ad for general-purpose static and ss analysis.		±1500 ±1500	10 ⁵ 10 ^{5°}	
ED	Excellent for dynamic measurements. High gage factor and extended fatigue life.	Dynamic: -320° to +400°F (-195° to +205°C)	±2% Nonlinear at strain levels over ±0.5%	±2500 ±2200	10 ⁶ 10 ⁷	
WA	Stress analysis and transducer applications. Wide temperature range and extreme environ- mental capability, High-endurance leadwires.	Normal: -100° to +400°F (-75° to +205°C) Special or Short Term: -320° to +500°F (-195° to +260°C)	±2%	±2000 ±1800 ±1500	10 ⁵ 10 ⁶ 10 ⁷	
wк	Widest temperature range and most extreme environmental capability. High-endurance lead- wires.	ure range and most extreme pability. High-endurance lead- Special or Short Term: -452° to +550°F (-269° to +290°C) Special or Short Term: -452° to +750°F (-269° to +400°C)		±2200 ±2000	10 ⁶ 10 ⁷	
EP	High-elongation measurements (post yield). Only available in 08 S-T-C value.	-100° to +400°F (-75° to +205°C)	±10% for gage lengths under 1/8 in (3.2 mm) ±20% for 1/8 in & over	±1000 EP gages sho under high-cyd	±1000 10 ⁴ EP gages show zero shift under high-cyclic strains.	
WD	For wide-range dynamic strain measurements in severe environments. High-endurance leadwires.	Dynamic: -320° to +500°F (-195° to +260°C)	±1.5% Nonlinear at strain levels over ±0.5%	±3000 ±2500 ±2200	10 ⁵ 10 ⁷ 10 ⁸	

Strain gage bridge: basic Wheatstone bridges

This is one possible VI: strain -> internal pressure

Write array to file, '2D data' and 'Enable indexing'

Create a 'while loop' with a stop button

File Edit O	perate Tools Browse Window Help		
<u>ତାର</u> ଅନ୍ୟ		1	2 1
			ſ
		stop	l
		STOP	
			ſ
1			

Add a 'time delay'; and create control

Create a Voltage input channel using DAQ Assistant, +10 V max, -10 V min, 1 sample on demand

The VI looks like this now

Add a numeric operator and create indicator for the result

Add a display chart on the front panel and wire it up

Create a formula node

Add inputs by right-clicking on the left border of the formula node

Name the inputs

Add outputs by right-clicking on the right border of the formula node and name them as shown

Create controls for input parameters; wire-up and write the governing equations, for dynamic data choose Single Scalar

Mechanical Engineering Department

Write array to file, '2D data' and 'Enable indexing'

Hardware. Signal conditioner/amplifier: 2310

Set 'excitation' to '10' volts; Calculate the appropriate gain factor; Adjust the gain settings (1-11) x Amplifier More during class discussions (use gain of 191)

Hardware. Specifications: strain gages

SELF-TEMPERATURE COMPENSATION: These gages have been manufactured with self-temperature compensation (STC) characteristics to minimize thermal output (see Tech Note TN-504). Thermal output data given below are valid only for the indicated test material, since thermal output is a function of the thermal expansion properties of the test specimen.

GENERAL INFORMATION SERIES EA STRAIN GAGES

GENERAL DESCRIPTION: Student Gages are EA Series gages. This series is a general-purpose family of constantan alloy strain gages widely used in experimental stress analysis. EA gages are constructed with a 0.001 inch (0.03 mm) tough, flexible polyimide film backing. All Student Gages include Option E, a polyimide encapsulation of the grid face, with exposed solder tabs. See Tech Note TN-505 for assistance in gage selection.

TEMPERATURE RANGE: Normal use temperature range for static strain measurement is -100°F to +350°F (-75°C to +175°C). For special or short-term exposure, an expanded range of -320°F to +400°F (-195°C to +205°C) may be used.

STRAIN LIMITS: Approximately 5% for 0.240 in (6 mm) gage length and approximately 3% for 0.120 in (3 mm) and 0.060 in (1.5 mm) gage lengths for single cycle use. See Tech Tip TT-605 for high elongation measurements.

FATIGUE LIFE: Dependent on gage length and method of cycling; 10^8 cycles at $\pm 1200\mu \in$, 10^6 cycles at $\pm 1500\mu \in$. Derate 10% for nonzero mean strains of same absolute (peak-to-peak) values. See Tech Note TN-508 for additional data.

ADHESIVES: M-Bond 200 is an excellent, general purpose adhesive for those learning to bond strain gages (see Instruction Bulletin B-127). M-Bond AE-10 may be used when a wider range of bonding properties is needed (see Instruction Bulletin B-137). Refer to Instruction Bulletin B-129 for proper surface preparation, and to Catalog A-110 for other bonding agents.

SOLDER: M-Line solder type 361 is recommended for leadwire attachment when operating temperatures do not exceed +300°F (+150°C). See Catalog A-110 for higher temperature solders.

PROTECTIVE COATINGS: Because of Option E encapsulation, Student Gages require no further protection under most laboratory conditions. When further protection is required, refer to Catalog A-110 for M-Coat protective coatings information.

NOTE: The backing of Student Gages has been specifically treated for optimum bond formation with all appropriate gage adhesives. No further cleaning is necessary if contamination of the prepared surface is avoided during handling. Should contamination occur, clean with a cotton swab slightly moistened with a low residue solvent such as isopropyl alcohol. Allow the gage to dry for several minutes before bonding.

For this lab: simulate strain gage, e.g., by use of 120 Ω ± 5% resistor (better tolerances should be used)

Wire strain gage (or simulated gage) wires to the terminal strip of the amplifier

Term.	Strain Gage
Red	Red
White	White
Blue	Black

The DAQ is connected with the output of the 2310

BNC cable from 2310's output (see ±10 terminal)

Test your VI and Hardware (Run your VI)

Use "Shunt" resistors of the 2310 Module

Equalize signals. Use "trim" knob of 2310 to have same +/- output LED signals

Trigger shunt resistor 'A', about 1000 MicroStrains

🖻 strain.vi	
Eile Edit View Project Operate Tools Window Help IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	<u>م</u> الا کار کار کار کار کار کار کار کار کار کا
Delay Time (s) 1.1 Modulus of Elasticity E(psi) 1.27E+7 Disson's Ratio 1.3 thickness (in) 0.0025 radius (in) 0.005 Multiplier 1000	Jurnessent 193.862 Waveform Chart 1000 000 <t< th=""></t<>
	>.

Trigger shunt resistor 'B'

🔁 strain.vi	
Eile Edit View Project Operate Tools Window Help	2 2 2 2
	MicroStrain 251.481
Delay Time (s) () 0.1 Modulus of Elasticity E(psi) () 1.27E+7 Poisson's Ratio () 0.3 thickness (in) () 0.0025 radius (in) () 0.005	Waveform Chart Plot 0 300 - - 250 - - 200 - - 901 150 - - 150 - - 0 - - 50 - - 0 - - -50 - - 12:35:56.753 PM 12:36:01.753 PM 3/26/2007 3/26/2007
Multiplier	file path (dialog if empty) C:\test1.xls stop STOP append to file? (new file:F) new file
<hr/>	

Your VI is ready to GO

🖻 st	train.	vi								<u></u>	
File	<u>E</u> dit	View	Project	<u>O</u> perate	<u>T</u> ools	<u>W</u> indow	Help			2	
					Delay $\left(\frac{1}{7}\right)$ 0.1 Modu $\left(\frac{1}{7}\right)$ 1.27 Poiss $\left(\frac{1}{7}\right)$ 0.3 thick $\left(\frac{1}{7}\right)$ 0.00 radiu	Time (s) Ilus of Els E+7 on's Ration ness (in) 25 s (in)	sticity E(psi)	MicroStrain -4.93292 Waveform Chart -2- -3- -4- -907 -4- -907 -6- -7- -8- 12:36:43.313 PM 2/96/2007	Plot 0	
					र) 0.00 Multi	5 iplier			file path (dialog if empty) C:\test1.xls append to file? (new file:F) new file	stop STOP	
e 1											

