WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

Engineering Experimentation ME-3901, D'2012

Laboratory #2 20 and 22 March 2012

General information

Office hours

<u>Instructors</u>: Cosme Furlong Office: HL-151 <u>Everyday</u>: 9:00 to 9:50 am Christopher Scarpino Office: HL-153 During laboratory sessions

<u>Teaching Assistants</u>: During laboratory sessions

General information

<u>Please refer to handout:</u> "Laboratory 2: Pressure Transducer Calibration"

Objectives

The objectives of this laboratory are:

- Calibrate a pressure transducer;
- Perform linear regression of data (least squares fitting);
- Verify appropriate manufacturer's specifications

Background

A pressure gage, such as that shown in Fig. 1, requires the operator to take manual readings.

Fig. 1. Small displacement of tube is amplified at center of gear which visually displays the pressure.

Background

A pressure transducer produces an electrical output that can be recorded continuously with an automated data acquisition system. In this experiment a pressure transducer will be calibrated and the results will be compared to the specifications shown in Fig. 2.

Fig. 2. PX242 Metal Case Transducer for Measuring Low Pressure and Vacuums

PX242-100G5V

	Silicon	Diaphragm
--	---------	-----------

- 🚩 Buna-N Seals
- 🚩 8.0 Vdc Excitation
- 🚩 12 Inch Lead Wires
- -40 to +85°C
- 🚩 1 to 6 Vdc Output
- Temperature Compensated

Rugged Low Profile Easy-to-Mount

SPECIFICATIONS

Excitation: 8 Vdc regulated (16 V max.) Output: 1 to 6 Vdc into 800 Ω min Linearity: ±1.5% FS BFSL, ±0.5% FS for 60 to 100 psig Hysteresis & Repeatability: ±0.25% FS Zero Balance: 1.0 Vdc ±0.05, PX243 3.5 Vdc ±0.05 Compensated Temperature Range: 0 to 145°F (-18 to 63°C) Operable Overpressure: 2 x FS Response Time: 1 ms Gage Type: Solid State Piezo-Resistive Body Material: Die-Cast Aluminum Pressure Port: 1/8 -27 NPT male

Notes:

- FS = Full scale
- BFSL = Best fit straight line

Pressure transducer: Si (Silicon) diaphragm

Pressure transducer: Silicon diaphragm. Resistive sensor

Pressure transducer: Silicon diaphragm. Resistive sensor

- The transducer requires a regulated excitation voltage between 8 and 16Volts
- With 8Volts excitation the nominal output is 1 V at zero pressure and 6 V at a full-scale pressure of 100 psig
- Therefore, the nominal voltage change is 5.00 V (6-1) for a pressure change of 100 psig (100-0)
- This gives a V/EU (Volts/Engineering Unit) of 50 mV/psi combined with an offset at zero psi
- If the excitation voltage is doubled to 16 V, the output voltage is also doubled to give a V/EU value of 100 mV/psi
- You will calibrate the pressure transducer using a mechanical gage as the reference

Note 1:

For our experiment, a regulated excitation voltage selectable between 10, 12 and 15 volts will be provided by a strain gage amplifier

Voltages less than 8 volts are outside the specified limits for the transducer and should not be used

Note 2:

- We will assume that the mechanical pressure gage is calibrated and reads exactly
- You should be able to read the pressure to within ± 1.0 psi (that is, ± 0.5 of one small division)
- When you record your measurements write down the appropriate number of digits
- For example, 24 is not the same as 24.0. In the first instance you are implying that it is ± 0.5 psi while in the second you are implying ± 0.05 psi.
- A note should indicate the all readings are within a specific resolution
- In a certified calibration lab we would use a much more accurate and precise calibration standard such as a dead-weight tester or a pressure transducer with an accuracy of at least four times that of the transducer we are trying to calibrate

Equipment

A compressed-air tank, of about 3 gallons volume. Note the pressure gage and pressure transducer on the tank, as well as the air hose connection and valve. Make sure all connections are secure before beginning the lab. Make sure all lab partners are wearing safety glasses!

Equipment

Enlarged view of pressure gage and pressure transducer with its 3 wires (red, black, and blue)

Build VI for calibration Take into account: Linear regression to define "<u>transfer function</u>" (i.e., Voltage → Pressure function)

This is one possible VI to build

Block diagram of the VI

Create while loop and add a 'control' stop button

🔀 Untitled 1 Block Diagram *	🛛
File Edit Operate Tools Browse Window Help	
수 🕸 🔘 💵 😵 🏎 🖻 🔐 13pt Application Font 🔹 🚛 🏧 🚥	<u></u>
s second s	
	STOP D
-	
	> .::

Configure 2 Input Channels using the DAQ Assistant

Configure 2 Input Channels using the DAQ Assistant

Configure 2 Input Channels using the DAQ Assistant: one for the Source voltage and another for the Pressure Gage Excitation Voltage - Hold CTRL to select both channels

reate New Express Task	
NI-DAO [™] DAQ Assistant	NATIONAL INSTRUMENTS™
Select the physical channel(s) to add to the task. If you have previously configured <u>global virtual channels</u> of the same measurement type as the task, click the Virtual tab to add or copy global virtual channels to the task. When you copy the global virtual channel to the task, it becomes a local virtual channel. When you add a global virtual channel to the task, the task uses the actual global virtual channel, and any changes to that global virtual channel are reflected in the task. If you have TEDS configured, click the TEDS tab to add TEDS channels to the task. For hardware that supports <u>multiple channels</u> in a task, you can select multiple channels to add to a task at the same time.	Physical Supported Physical Channels
	< Back Next > Finish Cancel

Set Range 10 to -10 V and other parameters as shown

Chanr	Noltage_0 Voltage_1	Voltage Input	Calibration		
Сі. (+ th	ick the Add Channels button •) to add more channels to e task.		Terminal Configuration Differential Custom Scaling <no scale=""></no>	× •	Select a scale from the pull-down list or select Create New to create a new custom scale.
Timing Acquis	Settings sition Mode 1 Sample (On Demand)	Samples to F	lead Rate (Hz)	1k	
Acqui	sition Mode 1 Sample (On Demand)	Samples to F	Lead Rate (Hz)	1k	

From the Math->Numeric icon menu get the following items:

From the Math->Numeric icon menu get the following items:

Add Controls for two of the numeric operators:

Need to split the data output into Pressure Transducer Output and Excitation Source

Split the data output into Pressure Transducer Output and Excitation Source

Make sure to <u>divide the Pressure transducer Output by</u> <u>the Excitation Source</u>

Wire them as follows

In the front panel add a Gage and 'enable' digital display

In the front panel add a Numerical Control Input

Front Panel now looks as follows

Wire the numeric control to a 'Build Array' Pull down the array to increase the number of inputs to it (we need two)

Complete the Wiring and add a convert from Dynamic Data with default options, as shown

Now add a Write to text "*.xls" file as shown (1D data port)

Now add a 'Write if True' case Structure

Create a Control to the internal True case Structure

Create Control for 'file path' and 'append to file'

Completed Back Panel

Completed Front Panel

Channel configuration

Power supply

Test your VI and Hardware

