WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

DESIGN OF MACHINE ELEMENTS ME-3320, B'2023

Lecture 15 November 2023

Notches and stress concentrations

Master Examples 6-1 and 6-2: *estimating S-N diagrams*

Master Example 6-3: *determining fatigue stress-concentration factors*

Notches and stress concentrations

Notches introduce stress-concentrations. See lectures 07-08, 13, and 14

- **Correcting for stress-concentrations.** \Box **Stress concentration factors in fatigue:** K_f , $K_{f s}$
- **Use of stress concentration factors in fatigue:**

$$
\sigma = K_f \; \sigma_{\text{nominal}}
$$

$$
\tau = K_{fs} \tau_{\text{nominal}}
$$

Notches and stress concentrations

Stress concentration factors in fatigue:

 $K_f = 1 + q(K_f - 1)$

Theoretical (static) stress-concentration factor: *K^t* \Box

Notch sensitivity factor: *r a q* + = 1 1 *a = Neuber's constant*

Neuber's constant (depends on the value of the ultimate tensile strength of the material used). See, for example, Tables 6-6, 6-7, and 6-8

Residual stresses: must be taken into account

- **Residual stress are built-in or introduced (typically during manufacturing) to an unloaded part.**
- \mathbb{R}^n **Residual stresses can be the cause of crack initiation and, therefore, fatigue failure**

Example: rotary dryer. Welding lifters to a rotary shell

Source: ASM International

*Residual stresses introduced during welding caused crack initiation*Lifter Weld Shell Crack

Fatigue failure *Designing for HCF*

Fatigue design situations \Box

Review Example 6-4: under fully-reversed bending: *parametric approach* \Box

A feed-roll assembly is to be mounted at each end on support brackets cantilevered from a machine frame. Examples of cantilevered bracket configurations are shown in the figures. Task is to design a cantilever bracket to support a fully reversed bending load.

Review Example 6-4: under fully-reversed bending: *parametric approach* Ш

A feed-roll assembly is to be mounted at each end on support brackets cantilevered from the machine frame as shown in the Figure. The feed rolls experience a fully reversed load of 1000 lb amplitude, split equally between the two support brackets. Design a cantilever bracket to support a fully reversed bending load of 500 lb amplitude for 10⁹ cycles with no failure. Its dynamic deflection cannot exceed 0.01 in.

Review Example 6-4: under fully-reversed bending: *iterative approach* Ш

Comment: *use MathCad example to perform design iterations* Ш *(file is included in the CD-ROM that came with your textbook)*

Fatigue failure *Designing for HCF*

Review Example 6-4: under fully-reversed bending

Geometric Stress-Concentration Factor K_t for a Filleted Flat Bar in Bending

Fatigue failure *Designing for HCF*

Review Example 6-4: under fully-reversed bending

Designing for HCF: fluctuating uniaxial stresses

Fatigue failure *Modified Goodman-diagram*

Augmented modified Goodman-diagram

Stress-concentration factors in fluctuating stresses

Note that component may "yield" locally

Mechanical Engineering Department

Stress-concentration factors in fluctuating stresses

Fatigue failure – Modified Goodman's diagram *Safety factors in fluctuating stresses: Cases 1 and 2*

Fatigue failure – Modified Goodman's diagram *Safety factors in fluctuating stresses: Cases 3 and 4*

Review Example 6-4: under fully-reversed bending: *parametric approach* Ш

A feed-roll assembly is to be mounted at each end on support brackets cantilevered from the machine frame as shown in the Figure. The feed rolls experience a fully reversed load of 1000 lb amplitude, split equally between the two support brackets. Design a cantilever bracket to support a fully reversed bending load of 500 lb amplitude for 10⁹ cycles with no failure. Its dynamic deflection cannot exceed 0.01 in.

Example 6-5: fatigue under fluctuating bending. Design \Box **bracket to support the load. Verify for maximum deflections**

Design of a Cantilever Bracket for Fluctuating-Bending Loading

Fatigue failure *Designing for HCF*

Review Example 6-4: under fully-reversed bending

Geometric Stress-Concentration Factor K_t for a Filleted Flat Bar in Bending

For next lecture: Master *Examples 6-5 and and 6-6***; use and understand corresponding MathCad solutions (in the CD that came with your book and/or on Norton's Machine Design website)**

Example 6-6: multiaxial fluctuating stresses. Verify the design Ш **against failure (e.g., by determining safety factors, other?)**

Notch radius (wall) is 0.25", Kt=1.70, Kts=1.35

Applied load: sinusoidal [-200,340] lb

Finite life of about 6x10 ⁷ cycles

- *Material: Al 2024-T4*
- *Operating conditions: room temp.*

Initial dimensions:

 $l = 6.0$ in *a* = 8.0 *in* $OD = 2$ in $ID = 1.5$ in

Comment: *use MathCad example to perform design iterations* \Box *(file is included in the CD-ROM that came with your textbook)*

Example 6-6: multiaxial fluctuating stresses. \Box

Example of mechanical configurations that can be idealized with arrangement shown in Example 6-6.

Example 6-6: multiaxial fluctuating stresses.

Example of mechanical configurations that can be idealized with arrangement shown in Example 6-6.

Example 6-6: Multiaxial Fluctuating Stresses

 \Box

2 The correction factors are calculated from equations 6.7 and used to find a corrected		
6.2 and 10		for bending
$A_{95} := 0.0105 \text{ od}^2$	$A_{95} = 0.042 \text{ in}^2$	Make sure to
$A_{95} = 0.0105 \text{ od}^2$	$A_{95} = 0.042 \text{ in}^2$	Make sure to
$A_{95} = 0.0105 \text{ od}^2$	$A_{95} = 0.042 \text{ in}^2$	Make sure to
$A_{95} = 0.042 \text{ in}^2$	Make Figure 10	
$C_{size} = 0.869 \left(\frac{d_{eq}}{in} \right)^{-0.097}$	$C_{size} = 0.895$	Note "negative" exponent
S_{ui} is useed in kpsi = 6.3 constants	$A := 2.7$ $b := -0.265$	Note "negative" exponent
S_{ui} is useed in kpsi = 6.3 times	$C_{siab} = 0.753$ for 99.9%	
Note that this is only $S_{f5B8} = C_{load}$ is used despite the fact that there is both bending and torsion present. The torsional shear stress will be converted to an equivalent tensile		
24 % of the S _{vi} .)	Note that the bending value of C_{tag} is used from equation	

3 This problem calls for a life of 6E7 cycles, so a strength value at that life must be estimated from the $S₁N$ line of Figure 6-33b using the corrected fatigue strength at that life. Equation $6.10a$ for this line can be solved for the desired strength after we compute the values of its coefficients a and b from equation 6.10 c .

 $S_m = 61.2$ ksi $S_m := 0.90 S_{tt}$ From Table 6-5 for 5E8 $z = 5.699$ $b := -\frac{1}{z} \cdot log\left(\frac{S_m}{S_f 5g8}\right)$ $b = -0.1288$ (c) $a := \frac{S_m}{10^{3-b}}$ $a = 148.9$ ksi $S_n := a \cdot N^b$ $S_{22} = 14.84$ ksi

Note that S_m is calculated as 90% of $S_{\mathcal{U}}$ because loading is bending rather than axial (see Eq. 6.9). The value of z is taken from Table 6-5 for $N = 5E8$ cycles. This is a corrected fatigue strength for the shorter life required in this case and so is larger than the corrected test value, which was calculated at a longer life.

4 The notch sensitivity of the material must be found to calculate the fatigue stress-concentration factors. Table 6-8 shows the Neuber factors for hardened aluminum. Interpolation gives a value of $a = 0.147^2$ in at the material's $S_{\mu\nu}$. Equation 6.13 gives the resulting notch sensitivity for the assumed notch radius.

$$
q := \frac{1}{1 + \frac{\sqrt{a}}{\sqrt{r}}}
$$

$$
q = 0.773
$$
 (d)

5 The fatigue stress-concentration factors are found from equation $6.11b$ using the given geometric stress-concentration factors for bending and torsion, respectively.

$$
K_f := 1 + q \cdot (K_t - 1)
$$
 $K_f = 1.541$ (e)

$$
K_{fS} := 1 + q \cdot (K_{ts} - 1)
$$
 $K_{fS} = 1.270$ (f)

 K_t and K_{ts} are given *(we are lucky!)*

This is calculated

materials with an S^e

differently for

6 The bracket tube is loaded in both bending (as a cantilever beam) and in torsion. The shapes of the shear, moment and torque distributions are shown in Figure 4-30. All are maximum at the wall. The alternating and mean components of the applied force, moment, and torque at the walls are

Forces: evaluated for amplitude and mean components

Moments: evaluated for amplitude, mean, and maximum components Loads $F_a := \frac{F_{max} - F_{min}}{2}$ $F_a = 270 \text{ lbf}$
 $F_m := \frac{F_{max} + F_{min}}{2}$ $F_m = 70 \text{ lbf}$ $F_a := \frac{F_{max} - F_{min}}{2} \qquad F_a = 270 \, lbf$ (g) $M_a := F_a \cdot l$ $M_a = 1620$ lbf·in Moments (h) $M_m := F_m \cdot l$ $M_m = 420$ lbf·in $M_{max} = M_a + M_m$ $M_{max} = 2040 \, lbf \cdot in$ Torques $a = 8.0 \cdot in$ $T_a = 2160$ lbf·in $T_a = F_{a} \cdot a$ $T_m = 560 lbf \cdot in$ $T_m := F_m \cdot a$

 $c = 1.000$ in

Evaluated for amplitude and mean components

7 The fatigue stress-concentration factor for the mean stresses depends on the relationship between the maximum local stress in the notch and the yield strength as defined in equation 6.17, a portion of which is shown here.

inertia

Outer fiber

Moment of $I := \frac{\pi}{64} \cdot \left(od^4 - id^4 \right)$ $I = 0.5369i n^4$ $J\coloneqq 2\cdot\! I$ $J = 1.0738$ in⁴ $\text{If } K_f \cdot \Big | \, \sigma_{max} \Big | \, < \, S_{\mathcal{Y}} \text{ then } \, K_{fm} := \, K_f \text{ and } \, K_{f \text{Sm}} := \, K_{f \text{s}}$

$$
K_f \left| \frac{M_{max} c}{I} \right| = 5.86 \text{ksi}
$$

which is less than $S_y = 47$ ksi so, $K_{fm} := K_f$ and $K_{fsm} := K_{fS}$

 $c = 0.5$ od

Compensate for local "yield," if any

gineering Department

In this case, there is no reduction in stress-concentration factors for the mean stress because there is no yielding at the notch to relieve the stress concentration.

8 The largest tensile bending stress will be in the top or bottom outer fiber at points A or A! The largest torsional shear stress will be all around the outer circumference of the tube. (See Example 4-9 for more details.) First take a differential element at point A or A' where both of these sresses combine. (See Figure 4-32.) Find the alternating and mean components of the normal bending stress and of the torsional shear stress on point A using equations 4.11b and 4.24b, respectively.

$$
\sigma_a := K_f \cdot \frac{M_a \cdot c}{I} \qquad \sigma_a = 4.65 k s i
$$
\n
$$
\tau_a := K_{fs} \cdot \frac{T_a \cdot c}{J} \qquad \tau_a = 2.56 k s i
$$
\n
$$
\sigma_m := K_{fm} \cdot \frac{M_m \cdot c}{I} \qquad \sigma_m = 1.21 k s i
$$
\n
$$
\tau_m := K_{fsm} \cdot \frac{T_m \cdot c}{I} \qquad \tau_m = 0.66 k s i
$$
\n(1)

Evaluate applied, amplitude and mean, stresses – point A is subjected to bending and shear

9 Find the alternating and mean von Mises effective stresses at point A from equation 6.22b.

$\sigma_{xa} = \sigma_a$	$\sigma_{ya} = 0 \cdot psi$	$\tau_{xyz} = \tau_a$	
Evaluate equivalent	$\sigma'_a = \sqrt{\sigma_{xa}^2 + \sigma_{ya}^2 - \sigma_{xa} \cdot \sigma_{ya} + 3 \cdot \tau_{xyz}^2}$	$\sigma'_a = 6.42 ksi$	
Miss, amplitude	$\sigma_{xm} = \sigma_m$	$\sigma_{ym} = 0 \cdot psi$	$\tau_{xym} = \tau_m$
and mean, stresses	$\sigma_{xxm} = \sigma_m$	$\sigma_{ym} = 0 \cdot psi$	$\tau_{xym} = \tau_m$

$$
\sigma'_m := \sqrt{\sigma_{xm}^2 + \sigma_{ym}^2 - \sigma_{xm} \cdot \sigma_{ym} + 3 \cdot \tau_{xym}^2}
$$
\n
$$
\sigma'_m = 1.66 \text{ks}
$$

10 Because the moment and torque are both caused by the same applied force, they are synchronous and in-phase and any change in them will be in a constant ratio.

This is a Case 3 situation and the safety factor is found using equation 6.18e. *Evaluate for all*

cases, if **unsure**
about which case
$$
N_f = \frac{S_n \cdot S_{ut}}{\sigma'_a \cdot S_{ut} + \sigma'_m \cdot S_n}
$$
 $N_f = 2.2$ At point A

Note the use of Sn in this equation (finite life)

Minu Department

cases, if unsure

Mises, amplitude

and mean, stresses

11 Since the tube is a short beam, we need to check the shear due to transverse loading at point B on the neutral axis where the torsional shear is also maximal. The maximum transverse shear stress at the neutral axis of a hollow, thin-walled, round tube was given as equation $4.15d$.

Cross-section area
$$
A := \frac{\pi}{4} \cdot \left(\omega d^2 - id^2\right)
$$
 $A = 1.374i n^2$
\n $\tau_{abend} := K_{fs} \cdot \frac{2 \cdot F_a}{A}$ $\tau_{abend} = 499 \text{ psi}$ (o)
\n $\tau_{mbend} = K_{fsm} \cdot \frac{2 \cdot F_m}{A}$ $\tau_{mbend} = 129 \text{ psi}$

Account for transversal shear – point B is subjected to pure shear

Point B is in pure shear. The total shear stress at point B is the sum of the transverse shear stress and the torsional shear stress which act on the same planes of the element.

> $\tau_{atotal} = 3055 \,\text{psi}$ $\tau_{\alpha total} = \tau_{\alpha band} + \tau_{\alpha}$ (p) $\tau_{\text{mtotal}} = 792 \,\text{psi}$ $\tau_{\text{mtotal}} = \tau_{\text{mbend}} + \tau_{\text{m}}$

12 Find the alternating and mean von Mises effective stresses at point B from equation 6.22b.

$$
\sigma_{xa} := 0 \cdot psi \qquad \sigma_{ya} := 0 \cdot psi \qquad \tau_{xya} := \tau_{atotal}
$$
\n
$$
\sigma'_a := \sqrt{\sigma_{xa}^2 + \sigma_{ya}^2 - \sigma_{xa} \cdot \sigma_{ya} + 3 \cdot \tau_{xya}^2} \qquad \sigma'_a = 5.29 \text{ ksi}
$$
\n
$$
\sigma_{xm} := 0 \cdot psi \qquad \sigma_{ym} := 0 \cdot psi \qquad \tau_{xym} := \tau_{mtotal} \qquad (q)
$$
\n
$$
\sigma'_m := \sqrt{\sigma_{xm}^2 + \sigma_{ym}^2 - \sigma_{xm} \cdot \sigma_{ym} + 3 \cdot \tau_{xym}^2} \qquad \sigma'_m = 1.37 \text{ ksi}
$$

Note the use of Sn in this equation (finite life)

Evaluate for all cases, if unsure about which case $7/1$

Evaluate equivalent

and mean, stresses

Mises, amplitude

Both points A and B are safe against fatigue failure.

13 The safety factor for point B is found using equation 6.18e.

 $N_f := \frac{S_n \cdot S_{ut}}{\sigma'_a \cdot S_{ut} + \sigma'_m \cdot S_n}$

xineering Department

At point B

 $N_f = 2.7$

Reading

- **Chapters 6 of textbook: Sections 6.5 to 6.8**
- **Review notes and text: ES2501, ES2502**

Homework assignment

- **Author's: as indicated in Website of our course**
- **Solve: as indicated in Website of our course**

