WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

DESIGN OF MACHINE ELEMENTS ME-3320, B'2024

Lecture 14 November 2024

Theoretical or uncorrected fatigue data

- □ Wohler strength-life or S-N diagram
 - \Box Theoretical <u>or uncorrected</u> fatigue strength: $S_{f'}$
 - \Box Theoretical <u>or uncorrected</u> endurance limit: $S_{e'}$

Estimating fatigue failure criteria

Based on experimental observations (bending, torsion, axial fatigue testing). If data are not available... research, estimate, or... perform experiments...

$$Some materials with a "knee"$$
For steels:
$$\begin{cases}
S_{e'} = 0.5 S_{ut} & \text{for } S_{ut} < 200 \text{ ksi } (1400 \text{ MPa}) \\
S_{e'} \cong 100 \text{ ksi } (700 \text{ MPa}) & \text{for } S_{ut} \ge 200 \text{ ksi } (1400 \text{ MPa})
\end{cases}$$
For irons:
$$\begin{cases}
S_{e'} = 0.4 S_{ut} & \text{for } S_{ut} < 60 \text{ ksi } (400 \text{ MPa}) \\
S_{e'} \cong 24 \text{ ksi } (160 \text{ MPa}) & \text{for } S_{ut} \ge 60 \text{ ksi } (400 \text{ MPa})
\end{cases}$$
For aluminums:
$$\begin{cases}
S_{f'@N=5\times10^8} = 0.4 S_{ut} & \text{for } S_{ut} < 48 \text{ ksi } (330 \text{ MPa}) \\
S_{f'@N=5\times10^8} \cong 19 \text{ ksi } (130 \text{ MPa}) & \text{for } S_{ut} \ge 48 \text{ ksi } (330 \text{ MPa})
\end{cases}$$
For copper alloys:
$$\begin{cases}
S_{f'@N=5\times10^8} = 0.4 S_{ut} & \text{for } S_{ut} < 40 \text{ ksi } (280 \text{ MPa}) \\
S_{f'@N=5\times10^8} \cong 14 \text{ ksi } (100 \text{ MPa}) & \text{for } S_{ut} \ge 40 \text{ ksi } (280 \text{ MPa})
\end{cases}$$

F

□ Materials <u>with</u> a "knee." Correcting function:

$$S_e = C_{load} \cdot C_{size} \cdot C_{surface} \cdot C_{temperature} \cdot C_{reliability} \cdot S_{e'}$$

at 1 x 10 ⁶ cycles

□ Materials without a "knee." Correcting function: $S_f = C_{load} \cdot C_{size} \cdot C_{surface} \cdot C_{temperature} \cdot C_{reliability} \cdot S_f$ at 5 x 10 ⁸ cycles

□ Correction factors:

 $C_{load}, C_{size}, C_{surface}, C_{temperature}, C_{reliability}$

Other factors may need to be added... depending on the type (& service) of components being designed...

 \Box Loading effects (correction):

 $C_{load} = \begin{cases} 1.0 & \text{Bending / Torsion} \\ 0.7 & \text{Axial Loading, e.g., tension/compression} \end{cases}$

□ Size effects (correction; <u>cylindrical parts</u>):

$$C_{size} = \begin{cases} 1.0 & d \le 0.3 \text{ in (8mm)} \\ 0.869d^{-0.097} & 0.3 \text{ in } \le d \le 10 \text{ in} \\ 1.189d^{-0.097} & 8.0 \text{ mm} \le d \le 250 \text{ mm} \\ \text{Larger sizes use } 0.6 \end{cases} \Leftarrow \text{cylindrical parts}$$

□ Size effects (correction; <u>non-cylindrical parts</u>):

$$d = \begin{cases} d_{equiv}; & d_{equiv} = \sqrt{\frac{A_{95}}{0.0766}} \end{cases} \Leftarrow \text{non-cylindrical parts} \\ \text{(See page 363 of Norton's)} \end{cases}$$

 $A_{95} = \begin{cases} \text{portion of the cross - sectional area of a} \\ \text{nonround part that is stressed between} \\ 95\% \text{ and } 100\% \text{ of its max. stress} \end{cases}$

Correcting theoretical fatigue data

 $C_{surface} = \{ \text{See Figure 6 - 26} \}$

FIGURE 6-26

Surface Factors for Various Finishes on Steel (From Fig. 12.6, p. 234, R. C. Juvinall, *Stress, Strain, and Strength*, McGraw-Hill, New York, 1967, with permission)

Correcting theoretical fatigue data

□ Surface effects (correction; Shigley and Mischke):

 $C_{surf} = \{ A (S_{ut})^b \text{ if } C_{surf} > 1 \text{ then } C_{surf} = 1 \}$

(Use this model in the required units, as indicated in Table 6-3)

Table 6-3	Coefficients for the Surface-Factor Equation					
	Source: Shigley and Mischke, Mechanical Engineering Design, 5th ed., McGraw-					
	Hill, New York, 1989, p. 283 with permission					

	1	MPa	kı	osi
Surface Finish	A	b	A	b
Ground	1.58	-0.085	1.34	-0.085
Machined or cold-drawn	4.51	-0.265	2.7	-0.265
Hot-rolled	57.7	-0.718	14.4	-0.718
As-forged	272	-0.995	39.9	-0.995

Correcting theoretical fatigue data

□ Temperature effects (correction):

$$C_{temp} = \begin{cases} 1.0 & T \le 450 \,^{\circ}C \,(840^{\circ}F) \\ 1 - 0.0058(T - 450) & 450 \,^{\circ}C < T \le 550 \,^{\circ}C \\ 1 - 0.0032(T - 840) & 840 \,^{\circ}F < T \le 1020 \,^{\circ}F \end{cases}$$

Correcting theoretical fatigue data

Reliability effects (correction): $C_{reliab} = \{\text{See Table 6-4}\}$

Table 6-4 **Reliability Factors** Standard deviation for $S_d = 0.08 \,\mu$ Reliability % Creliab 50 1.000 Within materials Manufacturing 90 0.897 99 0.814 99.9 0.753 0.702 99.99 0.659 99.999 10 µm

Once fatigue strength/endurance limit has been corrected... <u>construct estimated (corrected) S-N diagram</u>

Fatigue failure Creation of estimated S-N diagrams

 \Box Fatigue strength at 10³ cycles: S_m

 $S_m = \begin{cases} 0.90S_{ut} & \text{Bending} \\ 0.75S_{ut} & \text{Axial Loading} \end{cases} \Leftarrow \text{at } N = 10^3 \text{ cycles}$

Fatigue failure Creation of estimated S-N diagrams

 \Box Curve fitting of model (HCF-high cycle fatigue): $S(N) = aN^b$

Estimated S-N Curves for (a) Materials with Knee, (b) Materials Without Knee

□ Review Example 6-1: Ferrous materials (with a "knee")

EXAMPLE 6-1

Determining Estimated S-N Diagrams for Ferrous Materials

Units $MPa := 10^6 \cdot Pa$ $C := 1$ GivenThe bar is square and has a hot-rolled finish. The loading is fully reversed bending.Tensile strength $S_{ut} := 600 \cdot MPa$ Maximum temperature $T_{max} := 500 \cdot C$ Bar side dimension $b := 150 \cdot mm$ Alternating stress $\sigma_a := 100 \cdot MPa$ Reliability $R := 0.999$	Problem	Create an estimated S-N diagram for a bar and define its equations. How many cycles of life can be expected if the alternating stress is 100 MPa?				
GivenThe bar is square and has a hot-reled finish. The loading is fully reversed bending.Tensile strength $S_{ut} := 600 \cdot MPa$ Maximum temperature $T_{max} := 500 \cdot C$ Bar side dimension $b := 150 \cdot mm$ Alternating stress $\sigma_a := 100 \cdot MPa$ Reliability $R := 0.999$	Units	$MPa := 10^6 \cdot Pa \qquad C := 1$				
Tensile strength $S_{ut} := 600 \cdot MPa$ Maximum temperature $T_{max} := 500 \cdot C$ Bar side dimension $b := 150 \cdot mm$ Alternating stress $\sigma_a := 100 \cdot MPa$ Reliability $R := 0.999$	Given	The bar is square and has a hot-rolled finish. The loading is fully reversed bending.				
Maximum temperature $T_{max} := 500 \cdot C$ Bar side dimension $b := 150 \cdot mm$ Alternating stress $\sigma_a := 100 \cdot MPa$ Reliability $R := 0.999$		Tensile strength	$S_{ut} := 600 \cdot MPa$			
Bar side dimension $b := 150 \cdot mm$ Alternating stress $\sigma_a := 100 \cdot MPa$ Reliability $R := 0.999$		Maximum temperature	$T_{max} := 500 \cdot C$			
Alternating stress $\sigma_a := 100 \cdot MPa$ Reliability $R := 0.999$		Bar side dimension	$b := 150 \cdot mm$			
Reliability $R := 0.999$		Alternating stress	$\sigma_a \coloneqq 100 \cdot MPa$			
		Reliability	R := 0.999			

Assumptions Infinite life is required and is obtainable since this ductile steel will have an endurance limit. A reliability factor of 99.9% will be used.

□ Review Example 6-2: Nonferrous materials (without a "knee")

EXAMPLE 6-2

Determining Estimated S-N Diagrams for Nonferrous Materials

Problem	Create an estimated <i>S-N</i> diagram for an aluminum bar and define its equations. What is the corrected fatigue strength at 2E7 cycles?				
Units	$ksi := 10^3 \cdot psi$ $F := 1$				
Given	The forged 6061-T6 bar is round torsion.	d. The loading is fully reversed			
	Tensile strength	$S_{ut} := 45 \cdot ksi$			
	Maximum temperature	$T_{max} := 300 \cdot F$			
	Bar diameter	$d := 1.5 \cdot in$			
	Reliability	R := 0.990			

Assumptions A reliability factor of 99.0% will be used. The uncorrected fatigue strength will be taken at 5E8 cycles.

Fatigue Stress Concentration Factors (FSCF)

Fatigue failure theories:

Surface defects & stress concentrations

□ Fatigue failures always begin at a crack

- Cracks may be present in raw material used for fabrication (crystallographic defects; inclusions; etc.)
- Cracks may be introduced during fabrication
- Cracks develop over time due to cyclic loading (& corrosion)
- Cracks develop around stress concentrations

Shaft failed in fatigue. Crack initiated at keyway

Shaft with keyway

Notches and stress concentrations

□ Notches introduce stress-concentrations. <u>See</u> lectures 07-08 and 13

- \Box Correcting for stress-concentrations. Stress concentration factors in fatigue: K_f, K_{fs}
- $\hfill\square$ Use of stress concentration factors in fatigue:

$$\sigma = K_f \ \sigma_{\text{nominal}}$$

$$au = K_{fs} \ au_{nominal}$$

Notches and stress concentrations

 $\hfill\square$ Stress concentration factors in fatigue:

 $K_f = 1 + q(K_t - 1)$

 \Box Theoretical (static) stress-concentration factor: K_t

Neuber's constant (depends on the value of the ultimate tensile strength of the material used).
 See, for example, Tables 6-6, 6-7, and 6-8

Fatigue failure: Neuber's constant

Notches and stress concentrations

Table 6-6 Neuber's C for Steels	<mark>6</mark> Tonstant	Table Neube for An	6-7 r's Co neale	onstant d Aluminum		Table 6-8 Neuber's C for Hardene	8 onstant ed Aluminum
S _{ut} (ksi)	√a (in ^{0.5})	s _{ut} (kpsi)	√a (in ^{0.5})		S_{ut} (kpsi)	√a (in ^{0.5})
50	0.130)	0.500		15	0.475
55	0.118	15	5	0.341		20	0.380
60	0.108	20)	0.264		30	0.278
70	0.093	25	5	0.217		40	0.219
80	0.080	30)	0.180		50	0.186
90	0.070	35	5	0.152		60	0.162
100	0.062	40)	0.126		70	0.144
110	0.055	45	5	0.111		80	0.131
120	0.049					90	0.122
130	0.044						
140	0.039		200	ad ta da		fitting	in order
160	0.031	Μάγ	nee		curve	iiiing	in order
180	0.024	dete	rmi	ne Neub	er's co	nstant	tunction

y = f(x)

200

220

240

0.018

0.013 0.009

$$y =$$
 Neuber's constant $= \sqrt{a}$
 $x = S_{ut}$

Fatigue failure: Neuber's constant Notches and stress concentrations

Notch-Sensitivity Curves for Steels Calculated from Equation 6.13 Using Data from Figure 6-35 as Originally Proposed by R. E. Peterson in "Notch Sensitivity," Chapter 13 in *Metal Fatigue* by G. Sines and J. Waisman, McGraw-Hill, New York, 1959.

Fatigue failure: Neuber's constant Notches and stress concentrations

FIGURE 6-36 Part 2

Notch-Sensitivity Curves for Aluminums Calculated from Equation 6.13 Using Data from Figure 6-35 as Originally Proposed by R. E. Peterson in "Notch Sensitivity," Chapter 13 in *Metal Fatigue* by G. Sines and J. Waisman, McGraw-Hill, New York, 1959.

□ Review Example 6-3: determining fatigue stress-concentration factors

EXAMPLE 6-3

Determining Fatigue Stress Concentration Factors

Problem	A rectangular, stepped bar similar to that shown in Figure 4-36 is to be loaded in bending. Determine the fatigue stress-concentration factor for the given dimensions.			
Units	$ksi := 10^3 \cdot psi$			
Given	Using the nomenclature in Figure 4-36:			
	Tensile strength	$S_{ut} := 100 \cdot ksi$		
	Dimensions	$D := 2 \cdot in$	$d := 1.8 \cdot in$	$r := 0.25 \cdot in$

□ Review Example 6-3: determining fatigue stress-concentration factors

Geometric Stress-Concentration Factors and Functions for a Stepped Flat Bar in Bending - Also see the File APP_E-10 Source: Fig. 73, p. 98, R. E. Peterson, Stress Concentration Factors, John Wiley & Sons, 1975, with the publisher's permission

"Representative example: stress concentrations Class discussions

EXAMPLE: The main shaft of an 850 kW wind turbine is being redesigned. Designers realized that it is necessary to do stress analysis on the shaft *while accounting for*: (a) weight of the shaft; (b) weight *F* of the hub-blades assembly, which has a *mass* of 10 metric tons, (c) torque *T* produced at the rotational speed of 10 RPM at full power, and (d) *thrust load P of 36 kN*, (e) *fatigue* stress concentrations.

Representative example: stress concentrations Class discussions

FIGURE E-1

Geometric Stress-Concentration Factor K_t for a Shaft with a Shoulder Fillet in Axial tension

Representative example: stress concentrations Class discussions

FIGURE E-2

Geometric Stress-Concentration Factor K_t for a Shaft with a Shoulder Fillet in Bending

Representative example: stress concentrations

Class discussions

Geometric Stress-Concentration Factor K_t for a Shaft with a Shoulder Fillet in Torsion

Reading assignment

- Chapters 6 of textbook: Sections 6.0 to 6.5
- Review notes and text: ES2001, ES2501, ES2502

Homework assignment

- Author's: as indicated in website of our course
- Solve: as indicated in website of our course

