WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

DESIGN OF MACHINE ELEMENTS ME-3320, B'2024

Lecture 10-11

November 2024

Static failure theories

Accepted failure theories that apply to **ductile** materials:

- *Total strain energy theory*
- *Distortion energy theory*
	- *Pure shear-stress theory*
- *Maximum shear-stress theory*
	- *Maximum normal stress theory (limited application)*

Accepted failure theories that apply to **brittle** materials:

- *Maximum normal stress theory (even material)*
- *Maximum normal stress theory (uneven material)*
- *Coulomb-Mohr theory*
- *Modified Mohr theory*

Static failure theories Ductile materials

The 2-D Shear-Stress Theory Hexagon Inscribed Within the Distortion-Energy Ellipse

Static failure theories: experimental verifications Ductile & brittle materials

FIGURE 5-8

Experimental Data from Tensile Tests Superposed on Three Failure Theories (Reproduced from Fig. 7.11, p. 252, in Mechanical Behavior of Materials by N. E. Dowling, Prentice-Hall, Englewood Cliffs, NJ, 1993)

Static failure theories Brittle materials

 $\mathbf{\overset{\cdot}{\sigma}}_{1}$

 σ_3

Static failure theories Brittle materials

Static failure theories Brittle materials: even and uneven materials

FIGURE 5-10

Mohr's Circles for Both Compression and Tensile Tests Showing the Failure Envelopes for (a) Even and (b) Uneven Materials

Static failure theories

Brittle materials: *Coulomb-Mohr, modified-Mohr, and normal stress theories*

Coulomb-Mohr, Modified-Mohr, and Maximum Normal-Stress Theories for Uneven Brittle Materials

Static failure theories: brittle materials

Coulomb-Mohr, modified-Mohr, and normal stress theories Experimental observations

FIGURE 5-12

Biaxial Fracture Data of Gray Cast Iron Compared to Various Failure Criteria (From Fig 7.13, p. 255, in Mechanical Behavior of Materials by N. E. Dowling, Prentice-Hall, Englewood Cliffs, NJ, 1993. Data from R. C.
Grassi and I. Cornet, "Fracture of Gray Cast Iron Tubes under Biaxial Stresses," J. App. Mech, v. 16, p.178, 194

Static failure theories: brittle materials *Modified-Mohr theory: quadrants of interest*

FIGURE 5-13

Modified-Mohr Failure Theory for Brittle Material

Static failure theories: brittle materials *Modified-Mohr theory*

Safety factor: zone I:

Static failure theories: brittle materials *Modified-Mohr theory*

Safety factor: zone II

Static failure theories: brittle materials *Modified-Mohr theory*

Static failure theories: brittle materials *Effective stress: Dowling indexes*

(Similar concept as the equivalent von Mises stress in ductile materials)

$$
C_1 = \frac{1}{2} \left[|\sigma_1 - \sigma_2| + \frac{2S_{ut} - |S_{uc}|}{-|S_{uc}|} (\sigma_1 + \sigma_2) \right]
$$

$$
C_2 = \frac{1}{2} \left[|\sigma_2 - \sigma_3| + \frac{2S_{ut} - |S_{uc}|}{-|S_{uc}|} (\sigma_2 + \sigma_3) \right]
$$

$$
C_3 = \frac{1}{2} \left[|\sigma_1 - \sigma_3| + \frac{2S_{ut} - |S_{uc}|}{-|S_{uc}|} (\sigma_1 + \sigma_3) \right]
$$

Static failure theories Ductile materials

Static failure theories: brittle materials *Modified-Mohr theory: effective stress*

Safety factor:

Static failure theories: ductile & brittle materials *Review and Master: Examples 5-1 and 5-2*

Determine the safety factors for the bracket rod shown considering: (a) ductile; and (b) brittle materials.

Brittle case:

Ductile case:

Al 2024-T4 (consult Appendix C)

S^y = 47 kpsi

Class 50 gray cast iron (consult Appendix C) *Sut* = 52.5 kpsi. *Suc* = 164 kpsi

Uses of the bracket model configuration: suspension system

Uses of the bracket model configuration: transmissions

Hypoid Gear

Static failure theories Ductile materials

Static failure theories: brittle materials *Modified-Mohr theory: effective stress*

Safety factor:

Review Example

A circular rod is subjected to combined loading consisting of a tensile load $P = 10$ kN and a torque $T = 5$ kN·m. Rod is 50 mm in diameter.

1) Draw stress element (cube) at the most highly stressed location on the rod, and 2) draw corresponding Mohr's circle(s).

Review Example

A piece of chalk is subjected to combined loading consisting of a tensile load *P* and a torque T , see figure. The chalk has an ultimate strength σ_u as determined by a tensile test. The load *P* remains constant at such a value that it produces a tensile stress of $0.51 \sigma_u$ on any cross-section. The torque T is increased gradually until fracture occurs on some inclined surface.

Assuming that fracture takes place when the maximum principal stress σ_1 reaches the ultimate strength σ_u , determine the magnitude of the torsional shearing stress produced by the torque *T* at fracture and determine the orientation of the fractured surface.

Reading assignment

- **Chapters 5 of textbook: Sections 5.2 to 5.5**
- **Review notes and text: ES2501, ES2502**

Homework assignment

- **Author's:** As indicated in website of our course
- **Solve:** As indicated in website of our course

