WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

DESIGN OF MACHINE ELEMENTS ME-3320, B'2024

Lecture 09-10

November 2024

Loads are assumed to *not* vary over time

Failure theories that apply to: *Ductile materials*

-
- *Brittle materials*

Why do we need different theories ??

Static failure theories Tension test

Static failure theories Compression test

Accepted failure theories that apply to **ductile** materials:

- *Total strain energy theory*
- *Distortion energy theory*
	- *Pure shear-stress theory*
	- *Maximum shear-stress theory*
	- *Maximum normal stress theory (limited application)*

Accepted failure theories that apply to **brittle** materials:

- *Maximum normal stress theory (even material)*
- *Maximum normal stress theory (uneven material)*
- *Coulomb-Mohr theory*
- *Modified Mohr theory*

Static failure theories Ductile materials

Ductile materials: total strain energy

Using previous expressions, total energy is:

$$
U = \frac{1}{2}\sigma \varepsilon = \frac{1}{2E}[\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - 2\nu(\sigma_1\sigma_2 + \sigma_2\sigma_3 + \sigma_1\sigma_3)]
$$

which can be expressed as

$$
U_h = \frac{3}{2} \frac{(1-2\nu)}{E} \sigma_h^2
$$

$$
\sigma_h=\frac{\sigma_1+\sigma_2+\sigma_3}{3}
$$

Obtained by setting:

$$
U_h = U(\sigma_1 = \sigma_2 = \sigma_3 = \sigma_h)
$$

Hydrostatic energy Deformation energy

$$
U_d = \frac{1+\nu}{3E} [\sigma_1^2 + \sigma_2^2 + \sigma_3^2 -\sigma_1 \sigma_2 - \sigma_2 \sigma_3 - \sigma_1 \sigma_3]
$$

 O btained by setting: $\;U_d = U - U_h\;$

Static failure theories Ductile materials: distortion energy theory

$$
U_d = \frac{1+\nu}{3E} [\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1 \sigma_2 - \sigma_2 \sigma_3 - \sigma_1 \sigma_3]
$$

If **uniaxial yield** stress state (failure state):

$$
\sigma_1 = \sigma_y
$$

\n
$$
\sigma_2 = 0
$$

\n
$$
\sigma_3 = 0
$$

Therefore:

$$
U_d = \frac{1+\nu}{3E} \sigma_y^2
$$

Using **uniaxial yield** stress state (failure state)

Ductile materials: distortion energy theory

For any other state of stresses:

$$
U_d = \frac{1+\nu}{3E} [\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1 \sigma_2 - \sigma_2 \sigma_3 - \sigma_1 \sigma_3]
$$

Failure criterion is obtained by setting:

Ductile materials: distortion energy theory - **Von Mises effective stress**

From previous equation:

$$
\frac{1+\nu}{3E}\sigma_y^2 = \frac{1+\nu}{3E}[\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1\sigma_2 - \sigma_2\sigma_3 - \sigma_1\sigma_3]
$$

Therefore,

$$
\sigma_y^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1 \sigma_2 - \sigma_2 \sigma_3 - \sigma_1 \sigma_3
$$

$$
\sigma_y = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1 \sigma_2 - \sigma_2 \sigma_3 - \sigma_1 \sigma_3}
$$

(exactly at yield)

FIGURE 5-4

Three-Dimensional Failure Locus for the Distortion Energy Theory

Ductile materials: distortion energy theory - **Von Mises effective stress**

von Mises effective stress 1 2 2 3 1 3 2 3 2 2 2 1 'Definition: ⁼ + + [−] [−] [−] Note: yield surface is reached when ′ = = *To be safe, we want to keep '* <

von Mises effective stress: *uniaxial stress that would create the same distortion energy as that created by actual combination of applied 3D/2D stresses*

Ductile materials: distortion energy theory

Example: pure shear load

Using: $\sigma_y^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1 \sigma_2 - \sigma_2 \sigma_3 - \sigma_1 \sigma_3$ 2 3 2 2 2 1 $\sigma_y^2 = \sigma_1^2 + \sigma_2^2 + \sigma_3^2 - \sigma_1\sigma_2 - \sigma_2\sigma_3 - \sigma_1\sigma_1^2$

Maximum stress before failure, in this case, is: $S_{ys} = \frac{1}{\sqrt{2}}S_y = 0.577S_y$ 3 1 $=\frac{1}{\sqrt{2}}S_{y}=$

Static failure theories Ductile materials: **maximum shear-stress theory**

This theory states that failure occurs when:

$$
S_{\rm ys}=0.5\,S_{\rm y}
$$

(Failure occurs when maximum shear stress exceeds the shear stress at yield in pure tension)

Static failure theories Ductile materials: **maximum shear-stress theory**

Static failure theories Ductile materials

The 2-D Shear-Stress Theory Hexagon Inscribed Within the Distortion-Energy Ellipse

Static failure theories Ductile materials

Static failure theories: experimental verifications Ductile & brittle materials

Experimental Data from Tensile Tests Superposed on Three Failure Theories (Reproduced from Fig. 7.11, p. 252, in Mechanical Behavior of Materials by N. E. Dowling, Prentice-Hall, Englewood Cliffs, NJ, 1993)

Reading assignment

- **Chapters 5 of textbook: Sections 5.0 to 5.5**
- **Review notes and text: ES-2501, ES-2502**

Homework assignment

- **Author's:** As posted in website of our course
- **Solve:** As posted in website of our course

Review Example

A circular rod is subjected to combined loading consisting of a tensile load $P = 10$ kN and a torque $T = 5$ kN·m. Rod is 50 mm in diameter.

1) Draw stress element (cube) at the most highly stressed location on the rod, and 2) draw corresponding Mohr's circle(s).

Review Example

A piece of chalk is subjected to combined loading consisting of a tensile load *P* and a torque *T*, see figure. The chalk has an ultimate strength σ_u as determined by a tensile test. The load *P* remains constant at such a value that it produces a tensile stress of $0.51 \sigma_u$ on any cross-section. The torque T is increased gradually until fracture occurs on some inclined surface.

Assuming that fracture takes place when the maximum principal stress σ_1 reaches the ultimate strength σ_u , determine the magnitude of the torsional shearing stress produced by the torque *T* at fracture and determine the orientation of the fractured surface.

