WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

DESIGN OF MACHINE ELEMENTS ME-3320, B'2024

Lecture 08-09

November 2024

Axial compression -- columns Examples

Vestas' V80-2.0 MWatt

Axial compression -- columns Slenderness ratio: *S^r*

Definitions:
$$
S_r = \frac{l}{k}
$$
, with $k = \sqrt{\frac{l}{A}}$

• *Short columns: S*^{*r*} < 10 *Calculated based on compression stress criterion: A P* $\sigma_x =$

• *Intermediate/long columns:* $S_r \ge 10$ *Calculated based on critical unit load criterion: A Pcr*

Axial compression -- columns Long columns: concentric load

Bending moment:

$$
M = -P y
$$

For small deflections:
$$
\frac{M}{EI} = \frac{d^2y}{dx^2}
$$

(Government ODE)
$$
\frac{d^2y}{dx^2} + \frac{Py}{EI} = 0
$$

Solution (deflection) indicates:

$$
y(x) = C_1 \sin\left(\sqrt{\frac{P}{EI}} x\right) + C_2 \cos\left(\sqrt{\frac{P}{EI}} x\right)
$$

Axial compression -- columns Long columns

Deflection

$$
y(x) = C_1 \sin\left(\sqrt{\frac{P}{EI}} x\right) + C_2 \cos\left(\sqrt{\frac{P}{EI}} x\right)
$$

C¹ and C² are determined from boundary conditions (**end conditions**)

Possible end conditions (*make sure you understand BC's in terms of slope and deflection*):

Axial compression -- columns Long columns: end conditions + critical load *Pcr*

Definition:
$$
y(x) = C_1 \sin\left(\sqrt{\frac{P}{EI}} x\right) + C_2 \cos\left(\sqrt{\frac{P}{EI}} x\right)
$$

For the rounded-rounded end conditions:

(1)
$$
y(x=0) = 0 \longrightarrow C_2 = 0
$$

\n(2) $y(x=l) = 0 \longrightarrow C_1 \sin\left(\sqrt{\frac{P}{EI}} l\right) = 0$

Indicating that:

$$
\sqrt{\frac{P}{EI}} l = n \cdot \pi; \quad n = 1, 2, 3, \dots
$$

Many solutions….

Therefore,

$$
P_n = \frac{(n \cdot \pi)^2 E I}{l^2}; \quad n = 1, 2, 3, \dots
$$

Many critical loads….

Axial compression -- columns Long columns: end conditions + critical load *Pcr*

Typically, designs are based on the smallest critical load. Therefore,

$$
P_{cr} = \frac{\pi^2 E I}{l^2}; \text{ for } n = 1
$$
 using: $I = Ak^2$ and $S_r = \frac{l}{k}$

$$
\frac{P_{cr}}{A} = \frac{\pi^2 E}{S_r^2}; \text{ for } n = 1
$$
 Critical load per unit area in terms of slenderness ratio
(1) $y(x = 0) = 0$
Corresponding deflection: $y = C_1 \sin\left(\frac{\pi x}{l}\right)$
(2) $y(x = l) = 0$

Axial compression -- columns Accounting for different BC's

In order to take into account other boundary conditions, the concept of *effective length, leff* , is introduced:

$$
S_r = \frac{l_{\text{eff}}}{k} \quad \longrightarrow \quad \frac{P_{\text{cr}}}{A} = \frac{\pi^2 E}{S_r^2}
$$

Table 4-3 **Column End-Condition Effective Length Factors**

- 1) Determine force to be supported and expected length of the column (*design objective and corresponding constraint(s)*). Use free-body diagram(s) and equilibrium conditions.
- 2) Determine cross-section parameters of a proposed column:
	- *Area, A*
	- *Moment of inertia, I*
	- *Radius of gyration, k*
- 3) Determine slenderness ratio, *k l* $S_r = \frac{\iota_{\it eff}}{2}$ $r =$
	- *Identify boundary conditions (BC's) and apply appropriate value for the effective length leff -- use appropriate table (Table 4-3.)*
- 4) Identify material to use and its corresponding *compressive yield strength*, *Syc ,* and *elastic modulus*, *E*.

4) Determine slenderness ratio at half-yield: (*S^r*)*D* (*Design criterion*)

- (*Sr*)*^D is obtained as follows:*
	- (*a*) *Set the load per unit area as:* 2 *cr Syc A P* $=\frac{y_{yc}}{2}$ (*Half the yield strength*) *value in compression*) (*b*) *Therefore,* 2 2 2 S_r^2 *yc S* $S_{\,yc}$ $\pi^2 E$ =

(*c*) *Solve for slenderness ratio -- using previous equation, (b). This is the slenderness ratio at half-yield in compression.*

$$
(S_r)_D = \pi \sqrt{\frac{2E}{S_{yc}}}
$$

5) Determine type of column based on proposed design:

- *Johnson: if* S_r (step 3) < $(S_r)_D$ (Step 4)
- *Euler: if* S_r (step 3) > $(S_r)_D$ (Step 4)

(a) Construction of column failure lines

7) Determine allowed load:
$$
P_{allowed} = \frac{P_{cr}}{SF}
$$

- P_{cr} , is the critical load (step 6)
- SF , is the security factor (> 1)
- 8) If *Pallowed* is > than force to be supported, then*, a satisfactory design has been obtained* -- *not necessarily the optimal* !! Go to step (1) and refine your design, if possible (e.g., weight minimization)
- 9) If *Pallowed* is < than force to be supported, then, go to step (1) and improve design. You can select a different section and/or material.

Use of MathCad is strongly recommended !!

Axial compression -- columns Eccentrically loaded

Axial compression -- columns Eccentrically loaded

Maximum moment:
$$
M_{\text{max}} = P \cdot \left(e + y \big|_{x = \frac{l}{2}} \right) = P \cdot e \cdot \sec \left(\frac{l}{2} \sqrt{\frac{P}{EI}} \right)
$$

Compressive stress:
$$
\sigma_c = \frac{P}{A} + \frac{M c}{I} = \frac{P}{A} + \frac{M c}{A k^2}
$$

with the maximum stress level at $\|M=M_{\max}\|$ which yields

$$
\sigma_{c,\max} = \frac{P}{A} \left[1 + \left(\frac{ec}{k^2} \right) \cdot \sec \left(\frac{l}{k} \sqrt{\frac{P}{4EA}} \right) \right] \quad \text{setting} \quad \sigma_{c,\max} = S_{yc}
$$

Solve for *P* to obtain the critical load

(Secant column formula)

Reading assignment

- ⚫ **Chapters 4 of textbook: Sections 4.12 to 4.19**
- ⚫ **Review notes and text: ES2501, ES2502**

Homework assignment

- ⚫ **Author's:** as indicated on Website of our course
- ⚫ **Solve:** as indicated on Website of our course

