WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

DESIGN OF MACHINE ELEMENTS ME-3320, B'2024

Lecture 07-08

November 2024

Deflection in beams Example E1 -- in class

Recall:

$\frac{q}{EI} = \frac{d^4 y}{dx^4}$	
$\frac{V}{EI} = \frac{d^3y}{dx^3}$	
$\frac{M}{EI} = \frac{d^2 y}{dx^2}$	
$\theta = \frac{dy}{dx}$	

Load function - deflection

Shear function - deflection

Moment function - deflection

ил

Slope - deflection

y = f(x)

Deflection

Shear and bending-moment, slope-deflection diagrams Singularity functions: in-class examples (loading functions)

(a) Simply supported beam with uniformly distributed loading

Deflection in beams Example E1 (based on Norton's example 3-2B)

Determine and plot the shear, moment, slope, and deflection functions for the simply supported beam shown:

(a) Simply supported beam with uniformly distributed loading

 R_2

 \mathbf{x}

10

х

-0.002

Plotting singularity functions in MathCad Example E1 (Based on Norton's example 3-2B)

To generate the shear and moment functions over the length of the beam, equations (b) and (c) must be evaluated for a range of values of x from 0 to l, after substituting the above values of C_1 , C_2 , R_1 , and R_2 in them. For a Mathcad solution, define a step function S. This function will have a value of zero when x is less than the dummy variable z, and a value of one when it is greater than or equal to z. It will have the same effect as the singularity function.

Range of x $x := 0 \cdot in, 0.01 \cdot l \dots l$ Unit step function $S(x, z) := if(x \ge z, 1, 0)$

Write the shear and moment equations in Mathcad form, using the function S as a multiplying factor to get the effect of the singularity functions.

$$V(x) := R_I \cdot S(x, 0 \cdot in) \cdot (x - 0)^0 - w \cdot S(x, a) \cdot (x - a)^1 + R_2 \cdot S(x, l) \cdot (x - l)^0$$

$$M(x) := R_I \cdot S(x, 0 \cdot in) \cdot (x - 0)^1 - \frac{w}{2} \cdot S(x, a) \cdot (x - a)^2 + R_2 \cdot S(x, b) \cdot (x - b)^1$$

Plot the shear and moment diagrams.

(b) Shear Diagram

(c) Moment Diagram

Deflection in beams Example E2 (Based on Norton's example 3-3B)

Determine and plot the shear, moment, slope, and deflection functions for the cantilever beam shown:

Deflection in beams Example E2 -- in class

Recall:

$\frac{q}{EI} = \frac{d^4 y}{dx^4}$	
$\frac{V}{EI} = \frac{d^3y}{dx^3}$	
$\frac{M}{EI} = \frac{d^2 y}{dx^2}$	
$\theta = \frac{dy}{dx}$	

Load function - deflection

Shear function - deflection

Moment function - deflection

$$\theta = \frac{dy}{dx}$$

Slope - deflection

y = f(x)

Deflection

Deflection in beams Example E2 -- in class

Slope Diagram (rad)

Plotting singularity functions in MathCad Example E2 (Based on Norton's example 3-3B)

To generate the shear and moment functions over the length of the beam, equations (b) and (c) must be evaluated for a range of values of x from 0 to l, after substituting the above values of C_1 , C_2 , R_1 , and M_1 in them. For a Mathcad solution, define a step function S. This function will have a value of zero when x is less than the dummy variable z, and a value of one when it is greater than or equal to z. It will have the same effect as the singularity function.

Range of x $x := 0 \cdot in, 0.01 \cdot l \dots l$ Unit step function $S(x, z) := if(x \ge z, 1, 0)$

Write the shear and moment equations in Mathcad form, using the function S as a multiplying factor to get the effect of the singularity functions.

 $V(x) := R_I \cdot S(x, 0 \cdot in) \cdot (x - 0)^0 - F \cdot S(x, a) \cdot (x - a)^0$ $M(x) := -M_I \cdot S(x, 0 \cdot in) \cdot (x - 0)^0 + R_I \cdot S(x, 0 \cdot in) \cdot (x - 0)^1 - F \cdot S(x, a) \cdot (x - a)^1$

Deflection in beams: solve in class, if time permits Determine and plot the shear, moment, slope, and deflection functions for the beams shown:

Example E3 (Based on Norton's Example 4-6)

(c) Overhung beam with concentrated force and uniformly distributed loading

(can be solved with the method of superposition) Example E4 (Statically indeterminate)

Fully constrained beam with concentrated load

Design components to minimize stress concentrations

Designing to minimize stress concentrations

Initial design

(a) Force flow around a sharp corner

Improved design

(b) Force flow around a radiused corner

Modifications to reduce stress concentrations at a sharp corner

Stress distribution in crosssections Examples

Find the most highly stressed locations on the bracket shown. Draw stress elements (cubes) at points A and B

Stress concentrations: demo during class lecture

Experimentally obtained fringe patterns using photoelasticity: patterns reveal distribution of internal stresses.

> Note locations subjected to stress concentrations.

Stress concentrations

K_t is the geometric stress concentration factor -- normal stress

Stress concentration factors

Stress concentration at the edge of an elliptical hole in a plate (axial load)

Stress concentration factors

Stress concentration in a stepped flat bar subjected to bending

Stress distribution in cross-sections Example: geometric stress concentration factors

Find the most highly stressed locations on the bracket shown. Draw stress elements (cubes) at points A and B (also C and D, opposite to A and B, respectively). Assume a stress concentration factor of 2.5 in both bending and torsion.

Reading

- Chapter 9: design case studies
- Chapters 4 of textbook: Sections 4.12 to 4.19
- Review notes and text: ES-2501, ES-2502

Homework assignment

- Author's: consult website of our course
- Solve: consult website of our course

