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Topics for today

* Introduction to MathCAD: step functions

* Shear, moment, torsion diagrams: examples w/singularity
functions
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Internal forces and moments
Shear, Normal, and Bending moments

Internal forces (determination of shear and moment diagrams)
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Internal forces and moments
Shear, Normal, and Bending moments

Section at point C

Shear force

Bending moment
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Shear and bending-moment diagrams

A suspended bar supports a 600-Ib engine. Plot the
shear and moment diagrams for the bar.

Method of sections:
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Shear and bending-moment diagrams
Method of sections: plot using step functions + MathCad

ME-3320: example in Mathcad Define moments function:

A suspended bar supports a 600-Ib engine. Wil =200

Plot the shear and moment diagrams for the bar. M2(x) = 300-2— 900

lnPUt: MT(x) = 5(x,0)-M1(x) - S(x,1.5)-M1(x) + 5(x,1.5)- M2(x)

x:=0,0001.L.L

0

Define unit step function: _sg | | -
100 | .
S(x,2) = fx 2 z,1,0) g :;33 |
g MT()-300 | T T
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Shear and bending-moment diagrams
Singularity functions
Singularity functions:

*Definitions:

< X=d

0 x#a

on<0* Jf(x)=(x- a>n =

n>0:  f(x)=(x—a)" =} (x—a)" x2a

0 x<a

Integration rules:

x

*n<0: .<x—a>”dx=<x—a>n

+1

OHEO: A;<x—a>”dx: 1 l<x_a>n+l
n+

*Remark: the subscript positioning of # when # < 0 is sometimes used to emphasize
the fact that the singularity function behaves differently from n > 0
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Shear and bending-moment diagrams
Singularity functions

Main singularity functions and their use

Singularity function Graphical representation Loading
S
SooAx) = (x — a) ., a a |
. : w[}c)=—,'1«5"0<);—4:J'>_2 | !
(couple) ' ~ . =M .
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Shear and bending-moment diagrams
Singularity functions

Loading function: q(X)

Shear function: V(X)= jq(x) dx

Moment function: M (X) = IV(X) dx
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Shear and bending-moment diagrams
Singularity functions: in-class examples (loading functions)
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(a) Simply supported beam with
uniformly distributed loading
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Shear and bending-moment diagrams
Singularity functions: in-class examples (loading functions)

vi ! vk /
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(@) Simply supported beam with (b) Cantilever beam with
uniformly distributed loading concentrated loading
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(c) Overhung beam with moment (d) Statically indeterminate beam with
and linearly distributed loading uniformly distributed loading
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Shear and bending-moment diagrams
Singularity functions: example E1

Determine and plot the shear and moment functions for the

simply supported beam shown:
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(a) Loading Diagram
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Shear and bending-moment diagrams
Singularity functions: example E1 - MathCad

T generate the shear and moment functions over the length of the beam, equations (&) and
() must be evaluated for a range of values of x from 0 to J, after subetituting the above
wvalues of O, O, Ay, and A7 inthem  For a Mathead solution, define a step finction S
Thas function will have a value of zere when x 15 less than the dummy vanable z, and a
walue of one when it is greater than ot equal to 2. It will have the same effect as the

singularity function.
Range of x x = 04n,001.0.}
Tt step function Sx,n =iz = z,1,00

Wite the shear and moment equations i Iathcad form, using the finction 5 as a multiplying
factor to get the effect of the smgularty functions.

Fix) = Rp-Six, 0im) (x — 0)D —weaS(xa)(x — a)l + Ko S (x D(x - f)D

M(x) = RpS(x, 000 (x—-0) — E-S{x,a}-{x R e R

Dlot the shear and moment diagrams.

(&) Shear Diagram () MWloment Diagram
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Shear and bending-moment diagrams
Singularity functions: example E2

Determine and plot the shear and moment functions for the

cantilever beam shown: vy z
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Shear and bending-moment diagrams
Singularity functions: example E2 - MathCad

To generate the shear and moment fmctions over the length of the beam, equations (&) and
() must be evaluated for a range of values of x from 0 to J, after substituting the abowe
values of Oy, T, Fy, and A in them For a Mathcad selution, define a step function 5
Thiz finction will have a value of zero when x 15 less than the durmimy variable z, and a
value of one when it iz greater than or equal to = Tt will hawve the same effect as the

stgulatity function,
Eange of x xo=04n,001.70.
Tt step function Slx,zy=ifx=zz2,1,00

WWrite the shear and moment equations in Mathcad form, using the fanction 5 as a multiplyng
factor to get the effect of the smpulanty functions.

Fixy = Rp-Six,0dm) - (x — CI]ID - FSx,a)(x— cx}n

Mixy = -M;Six, 0i) - (x - CI]ID + R Sx, 0dm) (x - 0}1 - FEx,a)(x— a}l

fh) Shear Diagram fe) Mament Diagram
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Shear and bending-moment diagrams
Singularity functions: example E3

Determine and plot the shear and moment functions for the

beam shown:
[
A o= (a) Loading Diagram
a wi(x—a)’ 100 4 .
%
50 R" g
M, (b | - 0 _
* W
(x-0)"° ~50) -
(c) Overhung beam with moment ~100 T '|S' o II|(-}Y

and linearly distributed loading
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Shear and bending-moment diagrams
Singularity functions: example E3 - MathCad

To generate the shear and moment functions over the length of the beam, equations (&) and
() must be evaluated for a range of values of x from 0 to J, after substititing the abowve
values of Oy, Oy, &y, and By inthem, For a Mathcad solution, define a step fiunction 5
This function will have a value of zero when x 15 less than the dummy vanable z, and a
walue of one when it is greater than or equal to 2. Tt will have the same effect as the

singnlarity fiznction.
Fange of x x = 0dn, 00057 ]
TTnit step fanction Sx,2) =§x=zz,1,00

Wite the shear and moment equations in Mathead form, using the finction 5 as a multiplying
factor to get the effect of the singulanty functions,

Fix) = R;-S(x,cz}-(x—cz)n— E-S(x,a}-(x —cx}z—l—Rg-S(x,f}-(x —E)D

Mixy = M;Sx,0i)-(x - U}D-i-R;-S(x,cz)-(x—a)l - E-S(x,cz}-(x—czf

+Hx S(x Dix— E}l

b)) Shear Diagram fe) Moment Diagram
100 200

i
o n

/

Shear, V- Ib (y-direction)
Moment, M- Ibin (z-direction)
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Reading assignment

* Chapters 1, 3, and 9 of textbook
* Review notes and text: ES-2501, ES-2502

Homework assignment

* Author's: posted in Website of our course

* Solve: posted in Website of our course
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