WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

DESIGN OF MACHINE ELEMENTS ME-3320, B'2024

Lecture 02 October 2024

DO NOTE:

Watch the following short videos before coming to class

Tensile test:

https://www.youtube.com/watch?v=D8U4G5kcpcM <u>HERE</u>

Poisson's ratio:

https://www.youtube.com/watch?v=M_7Prst1Ysc <u>HERE</u>

Fatigue test:

https://www.youtube.com/watch?v=LhUclxBUV_E <u>HERE</u>

Brinell Hardness test

https://www.youtube.com/watch?v=RJXJpeH78iU <u>HERE</u>

Charpy impact test:

https://www.youtube.com/watch?v=tpGhqQvftAo <u>HERE</u>

Conventional tensile test

Stress: $\sigma = \frac{P}{A_o}$ (Average normal stress)

Strain:
$$\varepsilon = \frac{l - l_o}{l_o}$$

Modulus of elasticity:

Average normal stress in an axially loaded bar

Tensile test

Average normal stress in an axially loaded bar: Poisson's ratio

Poisson's

ratio:

 \mathcal{E}_{yy}

 \mathcal{E}_{XX}

Figure: 02-01-A-UN Note the before and after positions of three different line segments on this rubber membrane which is subjected to tension.The vertical line is lengthened, the horizontal line is shortened, and the inclined line changes its length and rotates.

Figure: 02-01-B-UN

Note the before and after positions of three different line segments on this rubber membrane which is subjected to tension. The vertical line is lengthened, the horizontal line is shortened, and the inclined line changes its length and rotates.

Microscale tensile test

Stress-strain diagrams: yield behavior

Tensile test

FIGURE 2-4

Stress-Strain Curve of a Brittle Material

FIGURE 2-5

A Tensile Test Specimen of Brittle Cast Iron After Fracture

Compression test

Compression Test Specimens After Failure (a) Ductile Steel (b) Brittle Cast Iron

Even materials: same behavior in tension as in compression.

Bending test: three-point bending

Bending Test Specimens After Failure (a) Ductile Steel (b) Brittle Cast Iron

Torsion test

FIGURE 2-8

Torsion Test Specimens After Failure (a) Ductile Steel (b) Brittle Cast Iron

Stress-strain relation (torsion): $\tau = \frac{Gr\theta}{l_o}$

Modulus of rigidity:

$$G = \frac{E}{2(1+\nu)}$$

Table 2-1	
Poisson's Ratio	ν
Material	ν
Aluminum	0.34
Copper	0.35
Iron	0.28
Steel	0.28
Magnesium	0.33
Titanium	0.34

Ultimate shear strength (torsion): $S_{us} = \frac{T_{(break)}r}{J}$

Not uniform stress distribution; (in some cases, thin-walled tubes are preferred for this test, why?)

Fatigue strength S_f and endurance limit S_e

FIGURE 2-10

Wohler Strength-Life or S-N Diagram Plots Fatigue Strength Against Number of Fully Reversed Stress Cycles

Resilience and toughness: impact load

Resilience and toughness: impact load

Wind turbine test set-up on the UCSD-NEES Outdoor Shake Table at UCSD's Jacobs School of Engineering. The Table is capable of creating realistic simulations of the most devastating earthquakes ever recorded. The facility is part of the National Science Foundation's George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES).

Reference: http://www.jacobsschool.ucsd.edu/

Hardness: Brinell, Rockwell, and Vickers test

$$H_B = \frac{F}{\frac{\pi}{2}D \cdot (D - \sqrt{D^2 - d^2})}$$

Table 2-3	Approximate Equivalent Hardness Numbers and Ultimate Tensile
	Strengths for Steels

Brinell test

(a) Brinell indentation

S_{ut} estimation using Brinell hardness number:

$$S_{ut} \cong 500 H_B \pm 30 H_B$$
, psi

$$S_{ut} \cong 3.45 H_B \pm 0.2 H_B$$
, MPa

Brinell	Brinell Vickers		Rockwell		Ultimate, σ_{μ}	
HB	HV	HRB	HRC	MPa	ksi	
627	667	_	58.7	2393	347	
578	615		56.0	2158	313	
534	569		53.5	1986	288	
495	528	—	51.0	1813	263	
461	491		48.5	1669	242	
429	455	—	45.7	1517	220	
401	425	_	43.1	1393	202	
375	396		40.4	1267	184	
341	360	_	36.6	1131	164	
311	328	—	33.1	1027	149	
277	292	—	28.8	924	134	
241	253	100	22.8	800	116	
217	228	96.4		724	105	
197	207	92.8		655	95	
179	188	89.0		600	87	
159	167	83.9	<u></u>	538	78	
143	150	78.6	_	490	71	
131	137	74.2		448	65	
116	122	67.6		400	58	

Note: Load 3000 kg for HB.

Source: Table 5-10, p.185, in N. E. Dowling, *Mechanical Behavior of Materials*, Prentice Hall, Englewood Cliffs, N.J., 1993, with permission.

Heat treatment

- Quenching: transformation temperature (steels \approx 700 °C); rapid cooling; formation of martensite
- Tempering: quenching; reheated (200 - 700 °C -- lower than transformation temperature); cool slowly
- Annealing: reverses quenching and tempering; slow cooling rate
- Normalizing: similar to annealing, but faster cooling rate

FIGURE 2-12

Stress-Strain Curves for Annealed, Quenched, and Tempered Steel

Cold working

Strain Hardening a Ductile Material by Cold Working (a) First Working (b) Second Working

ering Department

Forged Steel Crankshaft for a Diesel-Truck Engine - Courtesy of Wyman-Gordon Corp, Grafton, MA

Material properties Coatings and surface treatments: surface protection (wear resistance, corrosion, etc.)

FIGURE 2-16

Coating Methods Available for Metals

AISI/SAE designation of steel alloys

Туре	AISI/SAE Series	Principal Alloying Elements	
Carbon Steels		(represent hundredths of a percent of carbon present)	
Plain	10xx	Carbon	
Free-cutting	11xx	Carbon plus Sulphur (resulphurized)	
Alloy Steels			
Manganese	13xx	1.75% Manganese	
	15xx	1.00 to 1.65% Manganese	
Nickel	23xx	3.50% Nickel	
	25xx	5.00% Nickel	
Nickel-Chrome	31xx	1.25% Nickel and 0.65 or 0.80% Chromium	
	33xx	3.50% Nickel and 1.55% Chromium	
Molybdenum	40xx	0.25% Molybdenum	
	44xx	0.40 or 0.52% Molybdenum	
Chrome-Moly	41xx	0.95% Chromium and 0.20% Molybdenum	
Nickel-Chrome-Moly	43xx	1.82% Nickel, 0.50 or 0.80% Chromium, and 0.25% Molybdenum	
	47xx	1.45% Nickel, 0.45% Chromium, and 0.20 or 0.35% Molybdenum	
Nickel-Moly	46xx	0.82 or 1.82% Nickel and 0.25% Molybdenum	
	48xx	3.50% Nickel and 0.25% Molybdenum	
Chrome	50xx	0.27 to 0.65% Chromium	
	51xx	0.80 to 1.05% Chromium	
	52xx	1.45% Chromium	
Chrome-Vanadium	61xx	0.60 to 0.95% Chromium and 0.10 to 0.15% Vanadium minimum	

General properties

Approximate Ultimate Tensile Strengths of Some Normalized Steels

FIGURE 2-20

Ultimate Tensile Strengths of Some Aluminum Alloys

(AISI - American Iron & Steel Institute)

FIGURE 2-17

Young's Moduli for

Various Metals

Reading assignment

- Chapter 2 of textbook
- Review notes and text: ES2001

Homework assignment

- Author's: Refer to website of our course
- Solve: Refer to website of our course

