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A fast-Fourier-transform method of topography and interferometry is proposed. By computer processing of a non-
contour type of fringe pattern, automatic discrimination is achieved between elevation and depression of the object
or wave-front form, which has not been possible by the fringe-contour-generation techniques. The method has
advantages over moire topography and conventional fringe-contour interferometry in both accuracy and sensitivi-
ty. Unlike fringe-scanning techniques, the method is easy to apply because it uses no moving components.

INTRODUCTION

In various optical measurements, we find a fringe pattern of
the form

g(x,y) = a (x,y) + b(x,y) cos[27rfox + 0(x,y)], (1)

where the phase 0(x, y) contains the desired information and
a (x, y) and b (x, y) represent unwanted irradiance variations
arising from the nonuniform light reflection or transmission
by a test object; in most cases a(x, y), b(x, y) and 0(x, y) vary
slowly compared with the variation introduced by the spa-
tial-carrier frequency fo.

The conventional technique has been to extract the phase
information by generating a fringe-contour map of the phase
distribution. In interferometry, for which Eq. (1) represents
the interference fringes of tilted wave fronts, the tilt is set to
zero to obtain a fringe pattern of the form

go(x, y) = a(x, y) + b(x, y) cos[o(x, y)], (2)

which gives a contour map of O(x, y) with a contour interval
27r. In the case of moir6 topography,l for which Eq. (1) rep-
resents a deformed grating image formed on an object surface,
another grating of the same spatial frequency is superposed
to generate a moire pattern that has almost the same form as
Eq. (2) except that it involves other high-frequency terms that
are averaged out in observation. Although these techniques
provide us with a direct means to display a contour map of the
distribution of the quantity to be measured, they have fol-
lowing drawbacks: (1) The sign of the phase cannot be de-
termined, so that one cannot distinguish between depression
and elevation from a given contour map. (2) The sensitivity
is fixed at 2w7r because phase variations of less than 2 7r create
no contour fringes. (3) Accuracy is limited by the unwanted
variations a (x, y) and b(x, y), particularly in the case of
broad-contour fringes. Fringe-scanning techniques2 have
been proposed to solve these problems, but they require
moving components, such as a moving mirror mounted on a
translator, which must be driven with great precision and
stability.

We propose a new technique that can solve all these prob-
lems by a simple Fourier-spectrum analysis of a noncontour
type of fringe pattern, as given in Eq. (1).

PRINCIPLE AND OPERATION

First, a noncontour type of fringe pattern of the form given
in Eq. (1) is put into a computer by an image-sensing device
that has enough resolution to satisfy the sampling-theory
requirement, particularly in the x direction. The input fringe
pattern is rewritten in the following form for convenience of
explanation:

g(x, y) = a(x, y) + c(x, y) exp(27rifox)
+ c*(x,y) exp(-27rifox), (3)

with

c(x, y) = ('/2 )b(x, y) exp[i 0(x, y)], (4)

where * denotes a complex conjugate.
Next, Eq. (3) is Fourier transformed with respect to x by

the use of a fast-Fourier-transform (FFT) algorithm, which
gives

G(f, y) = A(f, y) + C(f-fo, y) + C*(f + fo, y), (5)

where the capital letters denote the Fourier spectra and f is
the spatial frequency in the x direction. Since the spatial
variations of a(x, y), b(x, y), and 1(x, y) are slow compared
with the spatial frequency fo, the Fourier spectra in Eq. (5) are
separated by the carrier frequency fo, as is shown schemati-
cally in Fig. 1(A).3 We make use of either of the two spectra
on the carrier, say C(f - fo, y), and translate it by fo on the
frequency axis toward the origin to obtain C(f, y), as is shown
in Fig. 1(B). Note that the unwanted background variation
a(x, y) has been filtered out in this stage. Again using the
FFT algorithm, we compute the inverse Fourier transform of
C(f, y) with respect to f and obtain c (x, y), defined by Eq. (4).
Then we calculate a complex logarithm of Eq. (4):

log[c(x, y)] = log[('/ 2)b(x, y)] + ip(x, y). (6)

Now we have the phase q(x, y) in the imaginary part com-
pletely separated from the unwanted amplitude variation b(x,
y) in the real part. The phase so obtained is indeterminate
to a factor of 2w. In most cases, a computer-generated func-
tion subroutine gives a principal value ranging from -7r to 7r,
as, for example, is shown in Fig. 2(A). These discontinuities
can be corrected by the following algorithm. We determine
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Fig. 1. (A) Separated Fourier spectra of a noncontour type of fringe
pattern; (B) single spectrum selected and translated to the origin.
The y axis is normal to the figure.
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Fig. 2. (A) Example of a phase distribution having discontinuities
that are due to the principal-value calculation; (B) offset phase dis-
tribution for correcting the discontinuities in (A); (C) continued
profile of the phase distribution. The y axis is normal to the
figure.

an offset phase distribution 0O (x, y) that should be added to
the discontinuous phase distribution Od (X, A) to convert it to
a continuous distribution Xc (x, y):

Xc (X, Y) = 10d (X, Y) + to (X, Y). (7)

The first step in making this determination is to compute the
phase difference

5 d (xi, A) = Od(Xi, - -d (Xi--1, A

between the ith sample phasditributin hreceding it, with
the suffix i running from 1 to N to cover all the sample points.
Since the variation of the phase is slow compared with the
sampling interval, the absolute value of the phase difference
I ofd (Xi, Y) d is much less than 2 ,at points whero e addphase
distribution is continuous. But it becomes almost 27r at

points where the 27r phase jump occurs. Hence, by setting an
appropriate criterion for the absolute phase difference, say
0.9 X 27r, we can specify all the points at which the 2w7r phase
jump takes place and also the direction of each phase jump,
positive or negative, which is defined as corresponding to the
sign of And (Xi, y). The second step is to determine the offset
phase at each sample point sequentially, starting from the
point x0 = 0. Since only a relative phase distribution needs
to be determined, we initially set kox(xo, y) = 0.4 Then we
set f0 x(xi, y) = 0 x (x 0, y) for i = 1, 2, 3_ . . , k-1 until the
first phase jump is detected at the kth sample point. If the
direction of the phase jump is positive (as marked by t in the
figure), we set Oox(Xk, y) = kox(Xk-1, y)- 2r, and if it is
negative (as marked by D), we set 0ox(Xk, y) = O(Xk l, y) +
2r. Again,westarttosetb/ox(xi,y) = XOx(xk,y) fori = k +
1, i = k + 2_ . , i = m - 1, until the next phase jump occurs
at the mth sample point, where we perform the same 27r ad-
dition or subtraction as at the kth sample point, with k now
being replaced with m. Repeating this procedure of 27r phase
addition or subtraction at the points of phase jump, we can
determine the offset phase distribution, as shown in Fig. 2(B),
the addition of which to kd (X, y) gives a continuous phase
distribution k,(x, y), as is shown in Fig. 2(C). In the case of
measurement over a full two-dimensional plane, a further
phase-continuation operation in the y direction is necessary
because we initially set qO x (x0 , y) = 0 for all y without respect
to the phase distribution in the y direction. It is sufficient
to determine an additional offset phase distribution in the y
direction, kOY(x, y), on only one line along the y axis, say, on
the line through the point x = XL, L being arbitrary. This can
be done by the same procedure as was described for the x di-
rection, with the initial value now being set at XoY(XL, yo) =

0. The two-dimensional offset phase distribution is then
given by

'o (x,y) = 0o x(X,y) - qOoX(xL,y) + 4o X(xL,y). (8)

In Eq. (8), (.X(x, y) -XOX(XL, y) represents the difference of
the offset phase between the points (x, y) and (XL, y), and

boY(XL, y) that between points (XL, y) and (XL, yO), so that
fO (x, y) gives a relative offset phase distribution defined as
the difference from the initial value at (XL, Yo)-

EXPERIMENTS

The validity of the proposed method was examined in ex-
periments using a Michelson interferometer with a He-Ne
laser source. Figure 3 shows5 an example of the interference
fringes of tilted wave fronts put into a microcomputer (Digital
LSI-11/2) by a solid-state line-image sensor (Reticon
RL1024H) with 1024 photodiode elements separated from one
another by 15 Arm; a sensor of this type is particularly suited
for our purpose because it has high resolution and accuracy
in the position of elements and a number of elements that is
convenient for an FFT algorithm. Note the presence in Fig.
3 of unwanted irradiance variations corresponding to a (x, y)
and b(x, y) in Eq. (1).

Before computing by the FFT algorithm, we weighted the
data by the multiplication of a hanning window, as is shown
in Fig. 4, to eliminate the influence of the discontinuity of the
data at the both ends. Figure 5 shows the computed spa-
tial-frequency spectra corresponding to Eq. (5); the spectra
are separated by the carrier frequency fo = 3 lines/mm. Only
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imaginary part is shown in Fig. 6(b). Figure 6(a) shows con-
ventional contour fringes generated by inserting a heat source
in one of the arms of the tilt-free interferometer. The mea-
surement shown in Fig. 6(b) was made over a range of the line
segment marked by H-i in the picture. Note that in this ex-

Fig. 3. Intensity distribution of the interference fringes of tilted wave
fronts taken into the microcomputer.
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Fig. 4. Distribution of the interference fringes weighted by a
hanning window w(x) = 1 - cos(2irx/D), where D is the range of the
measurement (15.3 mm).
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Fig. 5. Computed spatial-frequency spectra. The zero-frequency
spectrum is clipped to enhance the detail of the spectra on the car-
riers.

one spectral sideband was selected and shifted by f0 toward
the origin, and its inverse Fourier transform was computed
again by the FFT algorithm to obtain c(x, y) in Eq. (4). The
complex logarithm of c(x, y) was then computed; the dis-
continuous phase distribution Od(X, y) obtained from the

(c)

Fig. 6. (a) Conventional contour fringes showing the index distri-
bution around the heat source; (b) discontinuous phase distribution
obtained by measurement over a range of the line segment marked
byH in (a); (c) corrected continuous-phase distributions representing
a complete profile of the phase value over the range marked by l-4 in
(a).
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Fig. 7. (a) Contour fringes showing the residual aberration of the
interferometer; (b) phase distribution (less than 27r) measured over
a range of the line segment marked by [ in (a).
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which gives a complete profile of the phase measured over the
range of the linesegmentmarkedby Hin Fig. 6(a). Note that
the profile can be determined uniquely without ambiguity
about the distinction between elevation and depression of the
wave front form.

To demonstrate the sensitivity of the measurement, one
more example is given in Fig. 7. Figure 7(a) shows contour-
type fringes obtained when the heat source was removed; it
represents a residual aberration of the interferometer. Here
again, the measurement was made over a range of the line
segment marked by H in the picture, and the result is shown
in Fig. 7(b). Note that a phase distribution of less than 27r is
clearly detected by the proposed method, whereas it cannot
be observed in the picture of the contour-type fringes. The
residual aberration of the interferometer is stored in the
memory of the computer and is subtracted from the mea-
surement data to correct the error it has caused. This permits
the use of optical elements of rather low quality even for the
measurement of phase distributions less than 2wx.

To see the effect of noise, the same object was measured
twice with a 1-min interval between measurements; the dif-
ference in the results was computed and is shown in Fig. 8. As
can be seen in the figure, the fluctuation that is due to noise
is less than X/30, except at the ends of the measurement range.
The increase of errors at the ends is due to the use of the
hanning window. Because the fringe amplitude becomes zero
in these regions, as is seen in Fig. 4, the determination of phase
becomes quite sensitive to noise.

CONCLUSION

A Fourier-transform method of computer-based fringe-pat-
tern analysis has been proposed and verified by experiments.
The method has the sensitivity for detecting phase variations
of less than 27r and can be applied to subwavelength inter-
ferometry without a fringe-scanning process. The accuracy
has been improved by the complete separation of the phase
from other unwanted irradiance variations. By use of this
method, clear distinction can be made between elevation and
depression, even from a single fringe pattern. When the
method is applied to topography, it permits fully automatic
measurement without man-machine communication, as is
needed for the fringe-order assignment in computer-aided
moir6 topography; further, because only one selected spectrum
is used, the method has the additional merit that the mea-
surement is not disturbed by higher-order harmonics, which
are included in a nonsinusoidal grating pattern and give rise
to spurious moire fringes in the case of moire topography.
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