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Average normal stress in an axially loaded bar
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Average normal stress in an axially loaded bar

Internal distribution 

of forces  zRz FF

 
A

dAdF 

AP 

Average normal stress:

A

P
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Strain: definition: change in length per unit length

Normal strain

Average normal 

strain:
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Normal strain:
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Strain: definition: change in length per unit length

Shear strain

Shear strain:
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Stress  Strain: Hook’s Law

  E

E = Elastic modulus (aka)

Remember: E is 
nearly the same for 
different classes 

of steels !!
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Poisson’s ratio:

(a)

(b)

allongitudin

lateral




 Poisson’s ratio:
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Average direct shear stress

Bar subjected to 

shear load

ABCD section

A

B

C

D

A

B

C

D

AV

AV

(Area under 

shear)

(Internal 

loading)
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Shear stress  strain

Pure shear

Stress

Strain

 GHook’s law for shear:

with
)1(2 


E

G
(shear 

modulus)
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Statically indeterminate axially loaded member

Axially loaded 

member

y

Additional equations are 

obtained by applying:

Compatibility or 

kinematic equations



Load-displacement

equations

0/ BA
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Statically indeterminate axially loaded member

Compatibility or 

kinematic equations:

C

A

B

AC

CB

)2(0
EA

LF
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LF CBBACA
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Thermal stresses: uniaxial effects

TT  ,

TT 
(Thermal strains)

LTLTT  
(Thermal deformations)

 = linear coefficient of thermal expansion, 1/oC, 1/oF

T = temperature differential

L = original length of component
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Torsion formula

According to Hook’s law 

(linear elasticity):

dAdF 

Differential Force:

)( dAdT  

Differential Torque:

)(  G

Torsion formula for stresses:

(linear elastic)

J

T
and

J

cT 
  )(max
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The flexure formula

Resultant internal 

moment:


A

Maxx
dAy

c
M 2



zz

x

I

yM



A

zz dAyI 2

Area moment of 

inertia wrt to z-axis
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Max z
x

0Min

z

z

Shear formula

Observed in components subjected to bending loads

)()(

)()(
),(

ytxI

yQxV
yx

zz 


 Important to 

remember!!

''AyQ 

Internal distribution 

of shear stresses:

yxxy  
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Shear and bending diagrams: regions with distributed load

Free body 

diagram of 

element x:

;)(xw
dx

dV


)(xV
dx

dM


Important to 

remember!!
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Bending deformation of straight beams

The elastic curve

4

4

dx

yd

EI

w
 Load function  deflection

3

3

dx

yd

EI

V
 Shear function  deflection

2

2

dx

yd

EI

M
 Moment function  elastica

dx

dy
 Slope  deflection

)(xfy  Deflection
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Bending deformation of straight beams: example A

The cantilever shown is subjected to a vertical load P at it end.  

Determine the equation of the deformation (elastic) curve.  E∙I is 

constant.

y

Ay



Mechanical Engineering Department

Bending deformation of straight beams

The elastic curve

For small 

deformations:

zzIE

M

dx

yd




2

2
Elastica
equation

Important to 

remember!!
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Find the most highly stressed locations on 

the bracket shown.  Draw volume (stress) 

elements at points A and B

Combined loading
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Plane stress transformation (rotation)

Stress cube in 2D



x

y

Rotate cube in 2D while keeping

resultant forces the same
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Mohr’s circle (developed by Otto Mohr in 1882)
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
Principal stresses:

Maximum shear
Applied normal stress

Applied shear stress

2

(Principal stress)

(Principal stress)
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Thank you!!!


