WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

STRESS ANALYSIS ES-2502, D'2020

We will get started soon...

12 May 2020

WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

STRESS ANALYSIS ES-2502, D'2020

We will get started soon...

Lecture 26: Unit 24, 25: *Principal Stresses. Mohr's circle*

12 May 2020

General information

Instructor: Cosme Furlong HL-152 (774) 239-6971 – Texting Works

Email: cfurlong @ wpi.edu http://www.wpi.edu/~cfurlong/es2502.html

Teaching Assistant: Zachary Zolotarevsky Email: zjzolotarevsky @ wpi.edu

Stress at a point General state of stress. Stress cube in 3D

Notation

Normal Stress σ

 τ **xy** Direction Face

Equilibrium conditions require that:

$$
\tau_{xy} = \tau_{yx}, \tau_{xz} = \tau_{zx}, \tau_{yz} = \tau_{zy}
$$

Why?

Stress at a point General state of stress. Stress cube in 3D

There are 9 components of stress.

Equilibrium conditions are used to reduce the number of stress components to 6:

$$
\tau_{xy} = \tau_{yx}
$$

$$
\tau_{xz}^{} = \tau_{zx}^{}
$$

 $\tau_{yz} = \tau_{zy}$

Stress tensor Cauchy stress tensor

$$
\left[\begin{matrix} \sigma_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{yy} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{zz} \end{matrix} \right]_{tr}
$$

Tensors are quantities that are *invariant* to coordinate transformations (i.e., ranslations & rotations)

Stress at a point Plane stress

General state of stress **Pane stress**

Apply equilibrium conditions:

$$
(1) \quad \sum F_{x'} = 0 \, ; \quad + \nearrow
$$

(2) $\sum F_{y} = 0$; +

First equilibrium condition:

$$
(1) \quad \sum F_{x'} = 0 \, ; \quad + \nearrow
$$

- $-(\sigma_y \Delta A \sin \theta) \sin \theta$ $\sigma_x \Delta A - (\tau_{xy} \Delta A \sin \theta) \cos \theta$
	- $-(\tau_{xy} \Delta A \cos \theta) \sin \theta$

$$
-(\sigma_x \Delta A \cos \theta) \cos \theta = 0
$$

Second equilibrium condition:

$$
(2) \quad \sum F_{y'} = 0 \, ; \quad + \searrow
$$

- $\tau_{x'y'}\Delta A + (\tau_{xy}\Delta A\sin\theta)\sin\theta$
	- $-(\sigma_y \Delta A \sin \theta) \cos \theta$
	- $-(\tau_{xy} \Delta A \cos \theta) \cos \theta$
	- $+(\sigma_x \Delta A \cos \theta) \sin \theta = 0$

Transformation equations become:

$$
\sigma_{x} = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2} \cos 2\theta
$$

$$
+ \tau_{xy} \sin 2\theta
$$

$$
\tau_{x'y'} = -\frac{\sigma_x - \sigma_y}{2} \sin 2\theta + \tau_{xy} \cos 2\theta
$$

and by setting
$$
\theta = \theta + 90^{\circ} \implies
$$

$$
\sigma_{y'} = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos 2\theta - \tau_{xy} \sin 2\theta
$$

In-plane *principal stresses*

In-plane principal normal stresses can be obtained by:

$$
\frac{d}{d\theta}\sigma_{x} = \frac{d}{d\theta}\left(\frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2}\cos 2\theta + \tau_{xy}\sin 2\theta\right) = 0
$$

resulting in an angle of:

$$
\tan 2\theta_p = \frac{\tau_{xy}}{(\sigma_x - \sigma_y)/2}
$$

which is substituted into transformation equation to lead to the **principal stresses (Max/Min)**:

$$
\sigma_{1,2}\n_{(Max,Min)} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}
$$

Maximum and Minimum in-plane shear stress

Max/Min in-plane shear stresses can be obtained by:

$$
\frac{d}{d\theta}\tau_{x'y'} = \frac{d}{d\theta}\left(-\frac{\sigma_x - \sigma_y}{2}\sin 2\theta + \tau_{xy}\cos 2\theta\right) = 0
$$

resulting in an angle of: *xy x y s* τ σ_{\cdot} – σ θ $(\sigma_{\rm r}-\sigma_{\rm v})/2$ tan2 $-(\sigma_{\rm r} =$

which is substituted into transformation equation to lead to the **maximum in-plane shear stress (Max/Min)**:

$$
\tau_{\substack{Max/Min\\in-plane}} = \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}
$$

Mohr's circle (developed by Otto Mohr in 1882)

Compression Test Specimens After Failure (a) Ductile Steel (b) Brittle Cast Iron

Even materials: same behavior in tension and in compression.

Bending Test Specimens After Failure (a) Ductile Steel (b) Brittle Cast Iron

FIGURE 2-8

Stress-strain relation
(torsion):

$$
\tau = \frac{Gr\theta}{l_o}
$$

Modulus of rigidity:

$$
G = \frac{E}{2(1 - \theta)^2}
$$

 $2(1 + v)$

Ultimate shear strength (torsion): *J* $T_{(break)}$ *r* $S_{us} = \frac{I_{(break)}}{I}$ *us* $=\frac{I(break)}{I}$

Not uniform stress distribution; (in some cases, thin-walled tubes are preferred for this test, why?)

Torsion Test Specimens After Failure (a) Ductile Steel (b) Brittle Cast Iron

Reading assignment

- **Chapter 9 of textbook**
- **Review notes and text: ES2001, ES2501**

Homework assignment

• **As indicated on webpage of our course**

