STRESS ANALYSIS
ES-2502, D'2020

We will get started soon...

08 May 2020
STRESS ANALYSIS
ES-2502, D'2020

We will get started soon...

Lecture 24:
Unit 21: Bending of beams:
Deflection analysis (Ch.12, textbook)

08 May 2020
General information

Instructor: Cosme Furlong
HL-152
(774) 239-6971 - Texting Works

Email: cfurlong @ wpi.edu
http://www.wpi.edu/~cfurlong/es2502.html

Teaching Assistant: Zachary Zolotarevsky
Email: zjzolotarevsky @ wpi.edu
Deflection of beams and shafts

The elastic curve

We can study how beams and shafts deflect by knowing both:

a) Distribution of bending moments (\(V-M \) diagrams), and
b) Material & geometrical properties of components
Deflection of beams and shafts

(a) A B C D

(b) Moment diagram

(c) Elastic curve

Inflection point

Δ_A Δ_E
Deflection of beams and shafts

(a) A

(b) M

(c) A

Elastic curve

Moment diagram

Inflection point

Δ_D

Δ_C
Bending deformation of straight beams

\[\Delta s = \Delta x \]

longitudinal axis, \(x \)
Bending deformation of straight beams

Normal strain:

\[\varepsilon_x = \lim_{\Delta s \to 0} \frac{\Delta s' - \Delta s}{\Delta s} \]
Bending deformation of straight beams

Normal strain:

\[
\varepsilon_x = \lim_{\Delta s \to 0} \frac{\Delta s' - \Delta s}{\Delta s}
\]

\[
\varepsilon_x = \lim_{\Delta \theta \to 0} \frac{(\rho - y) \cdot \Delta \theta - \rho \cdot \Delta \theta}{\rho \cdot \Delta \theta}
\]

\[
\Delta s' = (\rho - y) \cdot \Delta \theta
\]

\[
\Delta x = \Delta s = \rho \Delta \theta
\]

\[
\rho = -\frac{y}{\varepsilon_x}
\]

\[
\frac{1}{\rho} = -\frac{\varepsilon_x}{y}
\]
Bending deformation of straight beams

From before:

\[
\frac{1}{\rho} = -\frac{\varepsilon_x}{y}
\]

Hook’s law:

\[
\varepsilon_x = \frac{\sigma_x}{E}
\]

Flexure formula:

\[
\sigma_x = -\frac{M \cdot y}{I_{zz}}
\]
Bending deformation of straight beams

The elastic curve

Radius of curvature is computed by:

\[
\frac{1}{\rho} = \frac{\frac{d^2 y}{dx^2}}{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{2/3}}
\]

Therefore,

\[
\frac{\frac{d^2 y}{dx^2}}{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{2/3}} = \frac{M}{E \cdot I_{zz}}
\]
Bending deformation of straight beams

The elastic curve

For small deformations:

\[\frac{d^2 y}{dx^2} = \frac{M}{E \cdot I_{zz}} \]

Elastica equation

Important to remember!!
Bending deformation of straight beams
The elastic curve

For small deformations:

\[\frac{d^2 y}{dx^2} = \frac{M}{E \cdot I_{zz}} \]

\[\frac{d}{dx} \left(E \cdot I_{zz} \frac{d^2 y}{dx^2} \right) = V(x) \]

\[\frac{d^2}{dx^2} \left(E \cdot I_{zz} \frac{d^2 y}{dx^2} \right) = w(x) \]
Bending deformation of straight beams

The elastic curve

\[E \cdot I_{zz} \frac{d^4 y}{dx^4} = w(x) \] \hspace{1cm} \text{Applied load}

\[E \cdot I_{zz} \frac{d^3 y}{dx^3} = V(x) \] \hspace{1cm} \text{Shear force}

\[E \cdot I_{zz} \frac{d^2 y}{dx^2} = M \] \hspace{1cm} \text{Elastica equation}
Bending deformation of straight beams

The elastic curve

\[
\frac{w}{EI} = \frac{d^4 y}{dx^4}
\]
Load function – deflection

\[
\frac{V}{EI} = \frac{d^3 y}{dx^3}
\]
Shear function – deflection

\[
\frac{M}{EI} = \frac{d^2 y}{dx^2}
\]
Moment function – \textit{elastica}

\[
\theta = \frac{dy}{dx}
\]
Slope – deflection

\[
y = f(x)
\]
Deflection
Bending deformation of straight beams

Boundary and continuity conditions

\[\Delta = \text{displacement} \]

\[\theta = \text{slope of displacement} \]
Bending deformation of straight beams: example A

The cantilever shown is subjected to a vertical load P at its end. Determine the equation of the deformation (elastic) curve. $E \cdot I$ is constant.
Bending deformation of straight beams: example B

The beam is made of two rods and is subjected to the concentrated load P. Determine the maximum deflection of the beam if the moments of inertia of the rods are I_{AB} and I_{BC}, and the modulus of elasticity is E.

Apply boundary and continuity conditions
Reading assignment

- Chapter 12 of textbook
- Review notes and text: ES2001, ES2501
Homework assignment

• As indicated on webpage of our course