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Axial load

P
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Note distortion 
lines: follow 

Saint-Venant’s
principle
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Axial load: Saint-Venant’s principle

Section a-a

Section b-b

Section c-c

Internal distribution 

of stresses at 

various sections
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Axial load: Saint-Venant’s principle

Section c-c Nominal 

stress

Uniform 

stress 

distribution
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Axial load: Saint-Venant’s principle

Saint-Venant’s principle: stresses 

and strains within a section will 

approach their nominal values as 

the section locates away from 

regions of load application

Section c-c Nominal 

stress

In your analyses, select locations (sections / points) located away from 

regions that are subjected to load application (to eliminate “end” 

effects)
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Elastic deformation of an axially loaded member

Section is a function of 

position
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Elastic deformation of an axially loaded member

Constant load and cross-sectional area
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Elastic deformation:
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Elastic deformation of an axially loaded member

Bar subjected to multiple axial loads
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Elastic deformation:
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Elastic deformation of an axially loaded member

Procedure for analysis

Internal loads
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Elastic deformation of an axially loaded member

Procedure for analysis

Internal loads

Sign convention:

+ tension and elongation

 compression and contraction
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Axial load: example D 

The assembly shown consists of an aluminum tube AB having a cross 

sectional area of 400 mm2.  A steel rod having a diameter of 10 mm is 

attached to a rigid collar and passes through the tube.  If a tensile load 

of 80 kN is applied to the rod, determine the displacement of the end C

of the rod.  Elastic modules: Esteel = 200 GPa and Ealum = 200 GPa

Approach:

1) Determine internal 

loading

2) Compute 

displacement
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Axial load: example D 

Displacement of C:

BCBC / 
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Axial load: example D 

(1) Internal loading

(2)  find displacement at C
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Axial load: example E 

The linkage is made of two pin-connected A-36 steel members, each 

having a cross-sectional area of 1.50 in2.  If a vertical force of is applied 

to point A, determine its vertical displacement at A.
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Principle of superposition

Applied when a component is subjected to complicated loading 

conditions  break a complex problem into series of simple problems

21 PPP 

Can only be applied for:

(a) small deformations;

(b) deformations in the elastic (linear) range of the  diagram
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Statically indeterminate axially loaded member

Axially loaded 

member

y  Statically 

indeterminate problem

Need additional equations!!

In this case, only one 

equilibrium equation:

;0  yF

)1(0 PFF AB

FA

FB



Mechanical Engineering Department

Statically indeterminate axially loaded member

Axially loaded 

member

y

Additional equations are 

obtained by applying:

Compatibility or 

kinematic equations



Load-displacement

equations

0/ BA
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Statically indeterminate axially loaded member

Compatibility or 

kinematic equations:

C

A

B

AC

CB

)2(0
EA

LF

EA

LF CBBACA
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Statically indeterminate axially loaded member

Axially loaded 

member

y

FA

FB

Forces are obtained by 

solving system of equations:

)2(0
EA

LF

EA

LF CBBACA

Compatibility

)1(0 PFF AB

Equilibrium
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Axial load: example F 

The 304 stainless steel post A has a diameter of d = 2.0 in and is 

surrounded by a red brass C83400 tube B.  Both rest on the rigid 

surface.  If a force of 5 kip is applied to the rigid cap, determine the 

average normal stress developed in the post and the tube.

Approach:

1) Apply equilibrium 

equations

2) Apply compatibility 

equations

3) Solve for stresses
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Reading assignment

• Chapters 3 and 4 of textbook

• Review notes and text: ES2001, ES2501
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Homework assignment

• As indicated on webpage of our course


