WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

STRESS ANALYSIS ES-2502, D'2020

We will get started soon...

13 April 2020

WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

STRESS ANALYSIS ES-2502, D'2020

We will get started soon...

Lecture 11: Unit 6: tension/compression of slender longitudinal bars: *statically indeterminate*

13 April 2020

General information

Instructor: Cosme Furlong HL-152 (774) 239-6971 – Texting Works Email: cfurlong @ wpi.edu http://www.wpi.edu/~cfurlong/es2502.html

Teaching Assistant: Zachary Zolotarevsky Email: zjzolotarevsky @ wpi.edu

Axial load

Notice how the lines on this rubber membrane distort after it is stretched. The localized distortions at the grips smooth out as stated by Saint-Venant's principle.

Figure: 04-01-UN-B Notice how the lines on this rubber membrane distort after it is stretched. The localized distortions at the grips smooth out as stated by Saint-Venant's principle.

Axial load: Saint-Venant's principle Internal distribution Section *a-a* of stresses at various sectionsLoad distorts lines located near load Section *b-b* Lines located away from the load and support remain straight Load distorts lines Section *c-c* located near support $\sigma_{\text{avg}} = \frac{P}{A}$

Axial load: Saint-Venant's principle

Axial load: Saint-Venant's principle

In your analyses, select locations (sections / points) located away from regions that are subjected to load application (to eliminate "end"

effects)

Saint-Venant's principle: stresses and strains within a section will approach their nominal values as the section locates away from regions of load application

Elastic deformation of an axially loaded member

$$
\sigma = \frac{P(x)}{A(x)} \quad \text{and} \quad \varepsilon = \frac{d\delta}{dx}
$$

Therefore,
$$
d\delta = \frac{P(x) dx}{A(x) E}
$$
 \longrightarrow $\delta = \int_{0}^{L} \frac{P(x)}{A(x) E} dx$

Elastic deformation of an axially loaded member

Elastic deformation of an axially loaded member

Elastic deformation:

$$
\delta = \sum_{i} \left(\frac{P L}{A E} \right)_{i}
$$

Elastic deformation of an axially loaded member Procedure for analysis

Elastic deformation of an axially loaded member Procedure for analysis

Axial load: example D

The assembly shown consists of an aluminum tube *AB* having a cross sectional area of 400 mm^2 . A steel rod having a diameter of 10 mm is attached to a rigid collar and passes through the tube. If a tensile load of 80 kN is applied to the rod, determine the displacement of the end *C* of the rod. Elastic modules: $E_{\text{steel}} = 200 \text{ GPa}$ and $E_{\text{alum}} = 200 \text{ GPa}$

Approach:

- 1) Determine internal loading
- 2) Compute displacement

Axial load: example D

Displacement of *C***:**

$$
\delta_{\rm C} = \delta_{\rm B} + \delta_{\rm C/B}
$$

Axial load: example D

 $(2) \rightarrow$ find displacement at C

Axial load: example E

The linkage is made of two pin-connected A-36 steel members, each having a cross-sectional area of 1.50 in2. If a vertical force of is applied to point *A*, determine its vertical displacement at *A*.

Principle of superposition

Applied when a component is subjected to complicated loading conditions \rightarrow break a complex problem into series of simple problems

Can only be applied for:

(a) small deformations;

(b) deformations in the elastic (linear) range of the σ - ε diagram

In this case, only one equilibrium equation:

$$
+\uparrow \sum F_{y}=0\,;
$$

$$
F_B + F_A - P = 0 \tag{1}
$$

 \rightarrow *Statically indeterminate problem*

Need additional equations!!

Additional equations are obtained by applying:

Compatibility or kinematic equations

↑ Load-displacement equations

$$
\delta_{A/B}=0
$$

*Forces are obtained by solving system of equations***:**

> $F_B + F_A - P = 0$ (1) *Equilibrium*

Axial load: example F

The 304 stainless steel post *A* has a diameter of *d* = 2.0 in and is surrounded by a red brass C83400 tube *B*. Both rest on the rigid surface. If a force of 5 kip is applied to the rigid cap, determine the average normal stress developed in the post and the tube.

Approach:

- 1) Apply equilibrium equations
- 2) Apply compatibility equations
- 3) Solve for stresses

Reading assignment

- **Chapters 3 and 4 of textbook**
- **Review notes and text: ES2001, ES2501**

Homework assignment

• **As indicated on webpage of our course**

