WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

STRESS ANALYSIS ES-2502, D'2020

We will get started soon...

10 April 2020

WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

STRESS ANALYSIS ES-2502, D'2020

We will get started soon...

Lecture 10: Unit 6: tension/compression of slender longitudinal bars: general

10 April 2020

General information

<u>Instructor</u>: Cosme Furlong HL-152 (774) 239-6971 - Texting Works Email: cfurlong @ wpi.edu http://www.wpi.edu/~cfurlong/es2502.html

<u>Teaching Assistant</u>: Zachary Zolotarevsky Email: zjzolotarevsky @ wpi.edu

Strain: example A

A concrete cylinder having a diameter of 6.0 in and a gauge length of 12 in is tested in compression. The results of the test are reported in the table as load versus contraction. Draw stress-strain diagram and estimate modulus of elasticity.

Displacement, in	Load, kip
0.0000	0.0
0.0006	5.0
0.0012	9.5
0.0020	16.5
0.0026	20.5
0.0036	25.5
0.0040	30.0
0.0045	34.5
0.0050	38.5
0.0062	46.5
0.0070	50.0
0.0075	53.0

Strain: example A

Compute stress and strain table:

Displacement, in	Load, kip	
0.0000	0.0	
0.0006	5.0	
0.0012	9.5	
0.0020	16.5	
0.0026	20.5	
0.0036	25.5	
0.0040	30.0	
0.0045	34.5	
0.0050	38.5	
0.0062	46.5	
0.0070	50.0	
0.0075	53.0	

Strain, in/in	Stress, kpsi
0.000000	0.000
0.000050	0.177
0.000100	0.336
0.000167	0.584
0.000217	0.725
0.000300	0.902
0.000333	1.061
0.000375	1.220
0.000417	1.362
0.000517	1.645
0.000583	1.768
0.000625	1.874

Strain: example A

Plot data and estimate yield point:

Strain: example B

The σ - ε diagram for a collagen fiber bundle from which a human tendon is composed is shown. If a segment of the Achilles tendon at *A* has a length of 6.5 in and an approximate cross-sectional area of 0.23 in² determine its elongation if the foot supports a load of 125 lb, which causes a tension in the tendon of 343.7 lb

Poisson's ratio:

Shear stress \leftrightarrow strain

Strain: example C

A bar made of ASTM A-36 steel has the dimensions shown. If the axial force of P = 80 kN is applied to the bar, determine the change in its length and the change in the dimensions of its cross section after applying the load. The material behaves elastically.

Axial load

Figure: 04-01-UN-A Notice how the lines on this rubber membrane distort after it is stretched. The localized distortions at the grips smooth out as stated by Saint-Venant's principle. Figure: 04-01-UN-B Notice how the lines on this rubber membrane distort after it is stretched. The localized distortions at the grips smooth out as stated by Saint-Venant's principle.

Axial load: Saint-Venant's principle

Axial load: Saint-Venant's principle

Axial load: Saint-Venant's principle

In your analyses, select locations (sections / points) located away from regions that are subjected to load application (to eliminate "end"

effects)

Saint-Venant's principle: stresses and strains within a section will approach their nominal values as the section locates away from regions of load application

Elastic deformation of an axially loaded member

$$\sigma = \frac{P(x)}{A(x)}$$
 and $\varepsilon = \frac{d\delta}{dx}$

Therefore,
$$d\delta = \frac{P(x) dx}{A(x) E} \longrightarrow \delta = \int_{0}^{L} \frac{P(x)}{A(x) E} dx$$

Elastic deformation of an axially loaded member

Elastic deformation of an axially loaded member

Elastic deformation:

$$\delta = \sum_{i} \left(\frac{P L}{A E} \right)_{i}$$

Elastic deformation of an axially loaded member Procedure for analysis

Elastic deformation of an axially loaded member Procedure for analysis

Axial load: example D

The assembly shown consists of an aluminum tube *AB* having a cross sectional area of 400 mm². A steel rod having a diameter of 10 mm is attached to a rigid collar and passes through the tube. If a tensile load of 80 kN is applied to the rod, determine the displacement of the end *C* of the rod. Elastic modules: $E_{\text{steel}} = 200$ GPa and $E_{\text{alum}} = 200$ GPa

Approach:

- Determine internal loading
- 2) Compute displacement

Axial load: example D

Displacement of C:

$$\delta_C = \delta_B + \delta_{C/B}$$

Axial load: example D

(2) \rightarrow find displacement at C

Reading assignment

- Chapters 3 and 4 of textbook
- Review notes and text: ES2001, ES2501

Homework assignment

• As indicated on webpage of our course

