WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

STRESS ANALYSIS ES-2502, D'2020

We will get started soon...

07 April 2020

WORCESTER POLYTECHNIC INSTITUTE MECHANICAL ENGINEERING DEPARTMENT

STRESS ANALYSIS ES-2502, D'2020

We will get started soon...

Lecture 08: Unit 6: Stress & Strain/ Hook's Law

07 April 2020

General information

<u>Instructor</u>: Cosme Furlong HL-152 (508) 831-5126 Email: cfurlong @ wpi.edu http://www.wpi.edu/~cfurlong/es2502.html

<u>Teaching Assistant</u>: Zachary Zolotarevsky Email: zjzolotarevsky @ wpi.edu

Strain: example F

Due to a loading, the plate is deformed into the dashed shape shown. Determine (a) the average normal strain along the side AB, and (b) the average shear strain in the plate at A relative to the x and y axes.

Strain: example F

Due to a loading, the plate is deformed into the dashed shape shown. Determine (a) the average normal strain along the side AB, and (b) the average shear strain in the plate at A relative to the x and y axes.

Strain: example F

Due to a loading, the plate is deformed into the dashed shape shown. Determine (a) the average normal strain along the side AB, and (b) the average shear strain in the plate at A relative to the x and y axes.

Strain: example G

The two wires are connected together at A. If the force **P** causes point A to be displaced horizontally 2 mm, determine the normal strain developed in each wire.

Approach:

- 1) Define geometry
- 2) Determine change in geometry
- 3) Compute required strains

Tensile test

Average Average $\sigma = \frac{P}{A}$ (normal)

(normal)

Stress ↔ Strain: tensile test

Tensile test

Stress ↔ Strain: tensile test

All values in inches	Standard specimen at nominal diameter:		Small specimen at nominal diameter:		
	0.500	0.350	0.25	0.160	0.113
Gauge length	2.00±0.005	1.400±0.005	1.000±0.005	0.640±0.005	0.450±0.005
Diameter tolerance	±0.010	±0.007	±0.005	±0.003	±0.002
Fillet radius (min.)	3⁄8	0.25	⁵ ⁄16	⁵ / ₃₂	³ / ₃₂
Length of reduced section (min.)	2.5	1.75	1.25	0.75	5/8

Material properties

Microscale tensile test

Machine is about 1.5 mm in height !!

Material properties: Stress - Strain

Tensile test: ductile material

Necking

Failure of a ductile material

Fractured surface

Stress-strain diagrams: ductile materials

Stress ↔ Strain: Hook's Law

$$\sigma = E \cdot \varepsilon$$

E = Elastic modulus (aka)

Remember: E is nearly the same for different classes of steels !!

Stress-strain diagrams: brittle materials

Stress-strain diagrams: natural rubber

Reading assignment

- Chapter 1 of textbook
- Review notes and text: ES2001, ES2501

Homework assignment

• As indicated on webpage of our course

