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ABSTRACT

With the electronic industry being one of the most dynamic, in terms of new technologies, electronic packages have
to be designed and optimized for new and ever more demanding applications in relatively short periods of time while
satisfying electrical, thermal, and mechanical requirements, as well as cost and manufacturability.  In addition, reliability
and durability have to be taken into consideration.  As a consequence, effective quantitative methodologies, such as
optical and computational should be applied in the study and optimization of microelectronic components.  In this paper,
a hybridized use of nondestructive, noninvasive, remote, full field of view, quantitative opto-electronic holography
techniques with computational modeling is presented.  The hybridization is illustrated with a representative application,
which shows that the combined use of opto-electronic holography techniques and computational modeling provides an
effective engineering tool for nondestructive study and optimization of microelectronic components.

Keywords: deformation measurements, electronic packaging, electro-optic holography, fiber optics, hybrid
methodology, microelectronic components, nondestructive testing, shape measurements.

1.  INTRODUCTION

Figure 1 depicts an electronic printed circuit board (PCB), categorized as the second level of the electronic
packaging hierarchy1.  A PCB may contain a large number of electronic components (first level of electronic packaging)
made of materials with different characteristics and properties and, therefore, each of the components behaving
differently under specific loading conditions.
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Under actual operating conditions the PCB as well as the individual electronic components, assembled on the PCB,
are subjected to electromagnetic, electrical, thermal, and/or mechanical conditions of loading, which may generate
failure of an electronic package.  This failure can be due to any individual or a combination of the following
mechanisms: fatigue, creep, stress relaxation, stress concentration, and/or bonding fractures2,3.  In addition, failure can be
induced by phenomena such as electromigration and popcorning4-6.  Reliability of an electronic package depends on the
correct functionality, under operating conditions, of the components at each one of the electronic packaging levels,
starting from the first level.  Therefore, due to the quantity of components assembled on an electronic package and the
complexity of possible failure mechanisms, reliability assessment requires the application of effective quantitative
methodologies.  These quantitative methodologies comprise the optical and computational techniques7-9.

An effective study and characterization of microelectronic components should include the use of both
computational and experimental methodologies.  Computational investigations enable parametric studies and the
determination of critical engineering conditions, while experimental investigations, especially optical, provide qualitative
and quantitative information on the actual response of the component of interest to the applied load conditions9.

In this paper, a novel hybridized use of nondestructive, noninvasive, remote, full field of view, quantitative opto-
electronic holography techniques with computational modeling is presented.  The hybridization is illustrated with the
investigation of a first level electronic packaging component, an electronic carbon resistor, showing that the combined
use of quantitative optical techniques and computational modeling provides an effective engineering tool for
nondestructive study and optimization of microelectronic components.

2.  OPTICAL-COMPUTATIONAL METHODOLOGY

2.1.  Experimental investigations

Figure 2 depicts a cross sectional view of a 3 ± 3 % ohm carbon resistor package of interest.  In this resistor, the
carbon-silica core is encapsulated in a silica shell package and two copper-lead leads are molded-in in order to provide
connections to other components or to PCB.  The resistor has nominal dimensions of 3.48 mm for the diameter and 10
mm for the length10.

Fig. 2.  Electronic carbon resistor of interest: (a) cross sectional view,
and (b) actual package.  The impedance of the resistor is 3 ± 3 % ohm.

The importance of testing the functionality of an electronic resistor is illustrated by comparing the electrical effects
of two resistors in an electrical circuit: one in good operating condition and another in damaged condition.  The damaged
condition is produced by 15 sec overloading of the resistor.  Figure 3 illustrate results of the testing procedures used to
investigate the electrical effects of the resistor in an electronic circuit.  Figure 3a depicts the measured frequency
response (FR) of the circuit with the resistor in good operating condition, and Fig. 3b the measured FR of the circuit with
the resistor in damaged condition.  A periodic signal of 2 Vpp and 1 kHz was used as an input to the circuit.  The
undesirable noise observed in the FRs shown in Figs 3a and 3b, as compared to the FR of a pure 2 Vpp, 1 kHz signal, can
be attributed to the effects of micro cracks developed in the core of the resistor as a result of imperfections in the
manufacturing processes, and as a result of damage caused by overloading, respectively.  Common testing procedures
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used to study and quantify the level of damage consist of sectioning the components of interest and applying failure
analysis, fractography, and microscopy techniques.  However, these testing procedures are time consuming and
destructive in nature11.

Fig. 3. Measured frequency responses of a testing circuit loaded with a
pure 2 Vpp, 1 kHz signal with: (a) resistor in good operating condition and

(b) resistor in damaged condition (overloaded).  High frequency noise due to
imperfections in the manufacturing processes (a), and as a result of damage

caused by overloading (b), is observed.

For certain applications, the nondestructive testing (NDT) of electronic packages may be needed, especially for
applications requiring noninvasive, full field of view, and real-time testing the behavior of a specific component
subjected to actual operating conditions.  This type of NDT can be accomplished by application of optical techniques
and, in particular, speckle phase correlation techniques in the form of opto-electronic holography (OEH).  Being
noninvasive and providing qualitative and quantitative full field information are some of the main advantages of the
OEH over other experimental techniques.  With the OEH, it is possible to perform static and dynamic investigations of
mechanical components subjected to a large variety of loading conditions.  In addition, it is possible to measure the
shape of components using optical contouring.  Combination of these capabilities makes the OEH a powerful
engineering tool that can be effectively utilized to study and optimize microelectronic components9.  Recent
technological advances in computer and fiber optic technologies have been applied to the OEH system and have added
the possibility of using it in on-site investigations in order to study and diagnose problems in industrial environments9,12.

2.1.1.  Description of the experimental setup

Figures 4 and 5 depict the major components of a currently operational OEH system used for high resolution
measurements of shape and deformation/displacement vectors in static and dynamic investigations9,12.  The light source
is an infrared MOPA (Master Oscillator/Power Amplifier) laser diode (LD), wavelength tunable with an operational
wavelength centered at 994 nm (at 25 oC), thermoelectric cooling capabilities, horizontal linearly polarized output,
driven by the controller LDD, Fig. 4.  The output of the LD is directed through a Faraday optical isolator (OI) providing
back reflection isolation to – 41 dB.  The OI provides 47o rotation at 994 nm and the polarizer on its input side is set to
horizontal polarization in order to match the main polarization axis of the LD output.  After the OI, light is launched into
a single mode fiber optic directional coupler assembly, FA, Fig. 5, by means of a laser to fiber coupler (LFC), which is
comprised of a GRIN lens, a 5 degrees of freedom stage, and an FC/AP connector port.  The main components of the FA
are three single mode fiber optic directional couplers (DC1, DC2, DC3), four piezoelectric cylinders (PZT1, PZT2,
PZT3, PZT4), and FC connectorized I/O’s.  Table 1 summarizes the major features of the FA.
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Table 1.  Major features of the single mode fiber optic directional coupler assembly, FA.
Input port Application Mode

I1 One illumination and three reference beams Three-camera
I2 One reference and three illumination beams Three-illumination
I2 Four illuminations In-plane speckle correlation
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With the OEH shown in Fig. 4, it is possible to measure deformation and shape of components of interest using the
same experimental setup.  High-resolution absolute shape measurements are made using the two wavelengths
technique12.
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the argument of the periodic term of Eq. 1 is modified to include the phase change due to static
deformations/displacements of the object of interest subjected to specific loading and boundary conditions.  This phase
change is characterized by the fringe-locus function Ω, constant values of which define fringe loci on the surface of the
object, and, observed at point (u,v) of the detector, it is defined as14,15

LKLKK ⋅=⋅−= )( 12Ω  ,   (4)

where K1 and K2 are the vectors of illumination and observation, respectively, 12 KKK −=   is the sensitivity vector,

and L is the displacement vector.  Therefore, the detected irradiances resulting from the combined observed and
reference beam irradiances are described by
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Since it is Ω that carries information pertaining to variations of the optical path length, the OEH video frame processing
algorithms eliminate ∆φ from the argument of the periodic function of the irradiance distributions given in Eqs 1 and 5,
yielding an image that has intensity modulated by a periodic function with Ω as the argument15.

The OEH can work in display and data mode.  In the display mode, interference patterns are observed at video rate
speed and are modulated by a cosinusoidal function of the form

]2/)()cos[(4 vu,vu,I M Ω  ,   (6)

which is obtained by performing specific algebraic operations between frames acquired at the two different states of
deformation, described by Eqs 1 and 5, respectively.  This mode is used for adjusting the OEH system and for qualitative
investigations.  The data mode is used for performing quantitative investigations.  In the data mode, two additional
images are generated: a cosinusoidal image,
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From Eq. 9 it can be observed that the spatial phase distribution represented by Ω (u,v) is a discontinuous function
wrapped modulo 2π, which must be further processed in order to obtain a continuous spatial phase distribution by
application of phase-unwrapping algorithms.

Accurate measurements of optical path length changes, characterized by displacement vector L, are obtained by9:

1) accurate determination of the continuous spatial phase distribution Ω (u,v), which in turn depends on:

a) the accuracy in the image acquisition process, for which low noise in the CCD camera and relating signal
conversion and processing boards are required

b) the appropriate calibrated phase-stepping algorithm for generation of speckle correlation interferograms
and data images



c) the effective processing of Ω (u,v) modulo 2π ;

2) determination of the magnification factors Mu and Mv, which allow the transformation from image plane

coordinates (u,v) to actual global coordinates system (x,y) as (Mu⋅u, Mv⋅v) → (x,y).  In the OEH setup shown in
Fig. 4, magnification factors are measured using the X-Y-Z translational stage in combination with image
processing procedures;

3) calibration and characterization of the camera and imaging system.  This characterization allows the accurate
determination of the points of observation and illumination, which are utilized to evaluate the sensitivity vector
K.  The camera calibration methods used for characterizing the imaging metrics in the OEH system shown in
Fig. 4 utilize NIST (National Institute of Standards and Technology16) traceable gages.

2.1.3.  NDT of electrical resistors

Figure 6 depicts external appearance of the resistors tested and typical interferograms corresponding to the real-
time investigations of the resistors, in good and damaged operating conditions, using the static double-exposure
acquisition mode.  Resistors were tested with an OEH setup characterized by a vector K sensitive to the out-of-plane
component of deformation, while loaded with a 2 Vpp, 1 kHz periodic signal.  The larger number of interference fringes
observed in Fig. 6c (damaged condition) than in Fig. 6b (good condition) clearly indicates that the resistors have
significantly different behavior under the same loading conditions, therefore, illustrating the applicability of the OEH
technique for health monitoring, in real-time, of electronic packages.  Quantitative characterization of structural
deformations due to thermal fields induced by electric loads can be obtained with OEH techniques.  Figure 7 shows
typical results corresponding to the fringe analysis of data images associated with Fig. 6b.

Fig. 6.  Real-time NDT investigation of electronic resistors using OEH: (a) external appearance as
observed on the OEH video display, (b) interferogram of a resistor in good operating condition, and

(c) interferogram of a resistor in damaged condition.  Experimental setup was sensitive to the
out-of-plane component of deformation.  Resistors were loaded with a 2 Vpp, 1 kHz periodic signal.
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Fig. 7.  Electrically induced displacements characterized using OE
radial displacement Ur from data images corresponding to Fig. 6
phase distribution of the resistor based on quantitative OEH inve
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2.2.  Computational modeling
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(a)
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Fig. 8.  Half cross sectional FEM model of resistor predicting electrically induced
radial deformations: (a) cross sectional radial deformation field distribution Ur

and (b) deformation along a longitudinal external surface of the resistor.

2.3.  Improvement of results: hybrid methodology

Figure 9 depicts a flowchart of the hybrid, optical and computational, methodology applied to the investigation of
microelectronic components7-9,18.  According to Fig. 9, computational investigations are performed on the initial
configuration, while the actual component is tested experimentally.  Comparisons between experimental and
computational results are based on fringe prediction (FP).
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When discrepancies between computational and experimental results are encountered, it is necessary to verify the
input parameters for the computational model and or experimental conditions.  Verifications include uncertainty and
analytical investigations, characterization of material properties, geometric and modeling accuracy, mechanical and
optical setups, and/or the use of experimentally obtained boundary conditions in the computational models.  The results
of these comparisons provide information on the accuracy of the computational analyses with respect to modeling the
experimental behavior of the component of interest.  When an acceptable degree of accuracy is obtained, the
computational model is applied to perform sensitivity analyses of the selected objective function with respect to the
specified design variables as well as shape optimization of the initial configuration.  The geometry obtained from the
shape optimization analyses is used to manufacture a prototype, which is experimentally tested in order to perform
computational and experimental comparisons through the FP operation.

Figure 10 shows FP results before and after the application of the hybrid methodology.  Predicted fringe pattern
depicted in Fig. 10a corresponds to FEM modeling results shown in Fig. 8, and the fringe pattern shown in Fig. 10b
corresponds to the FEM results obtained after application of the hybrid methodology.  Improvements are mainly due to
the utilization of experimentally obtained material properties in the computational model.  The predicted patterns should
be compared to measured interference pattern, Fig. 6b, to realize improvements in the results.
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3.  CONCLUSIONS

nal methodology for nondestructive testing of microelectronic components has been
presentative application.  This application clearly demonstrates that neither only
ntal techniques should be applied to solve an engineering problem, because applying
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ronic packages.
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