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Abstract

Let Γ = (V, E) be a graph with vertex set V and edge set E. The
graph group based on Γ, FΓ, is the group generated by V , with defining
relations xy = yx, one for each pair (x, y) of adjacent vertices in Γ.
For n ≥ 3, the n-gon is the graph with n vertices, v1, . . . , vn, and n
edges (vi, vi+1), indices modulo n. In this article we will show that
if Γ has a full subgraph which is isomorphic to an n-gon, then the
commutator subgroup of FΓ, F ′

Γ, has a subgroup which is isomorphic
to the fundamental group of the orientable surface of genus 1 + (n −
4)2n−3.

So, in particular, the graph group of the pentagon contains a sub-
group which is isomorphic to the group of the five-holed torus. As an
application, we note that this implies that many artin groups contain
surface groups, see [4]. We also use this result to study the com-
mutator subgroups of certain graph groups, continuing the study of
subgroups of graph groups begun in [2] and [6]. We show that F ′

Γ is
free if and only if Γ contains no full subgraph isomorphic to any n-gon
with n ≥ 4, which is an improvement on a theorem in [1]. We also
show that if Γ contains no full squares, then F ′

Γ is a graph group if
and only if it is free; this shows that there exist graphs groups whose
commutator subgroups are not graph groups.
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1 Preliminaries

A graph is a pair (V,E), where V is the set of vertices and E is a set of
unordered pairs of elements of V . So a graph is undirected with no loops or
multiple edges. A graph Σ = (W,D) is a subgraph of Γ if W is contained in
V and D is contained in E. In this case there is a natural homomorphism
f : FΣ → FΓ defined by setting f(w) = w. If D contains every pair vertices
in W which are adjacent in Γ, then Σ is said to be a full subgraph. In this
case it is clear that the natural homomorphism is one-to-one, and we shall
regard FΣ as a subgroup of FΓ. If Γ has connected components Γ1, Γ2, . . . , Γk,
then FΓ = FΓ1 ∗ FΓ2 ∗ . . . ∗ FΓk . The complement of Γ = (V, E), denoted by
Γc, is the graph whose vertex set is also V , two vertices being adjacent in Γc

if and only if they are not adjacent in Γ. If W is the vertex set of a connected
component of Γc, then the full subgraph of Γ induced by W is called a join
component of Γ. Note that two vertices which lie in different join components
are adjacent in Γ.

Given u ∈ FΓ, the length of u, |u|, is the length of a shortest word, w, in
V ±1 which represents it, and the support of u, supp(u), is defined to be set of
vertices v ∈ V such that v or v−1 occurs in w. Supp(u) is well defined, see [5].
u is cyclically reduced if u cannot be written u = au′a−1 with |u| = |u′| + 2.
Every element is conjugate to a cyclically reduced element. Let x ∈ FΓ,
x cyclically reduced. Let Sx be the full subgraph of /Gamma induced by
supp(x), and let A1, . . . , An be the vertex sets of the join components of
Sx. Then x can be factored uniquely as the product x = x1 . . . xk, where
supp(xi) = Ai. Let ri be a generator for the largest cyclic subgroup of FΓ

containing xi. ri is uniquely defined up to sign and is called a pure factor
of x. Let link(x) denote the set of vertices v in V − supp(x) such that v is
adjacent to every vertex in supp(x).

We will need the following theorem from [5] :

Theorem 1 (Centralizer Theorem) Let x ∈ FΓ and let ri and link(x)
be defined as above. Then

cent(x) =< r1 > ⊗ · · ·⊗ < rn > ⊗ < link(x) > .
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2 Realization of the Commutator Subgroup

Let Γ = (V, E) be a graph and let XΓ denote the Cayley complex of the
corresponding presentation of FΓ; that is, XΓ has one 0-cell, *, an oriented 1-
cell for each of the n vertices in the graph Γ, and, for each edge (a, b) in E, an
oriented two cell attached along the loop aba−1b−1. We have π1(XΓ, ∗) = FΓ.

If Γ has n vertices, then XΓ is a subcomplex of the n-fold cartesian product
(S1)n, where the circle S1 has one 0-cell and (S1)n is the product complex.
In particular, if K is the complete graph the vertex set V , then XK is the
entire 2-skeleton of (S1)n. Let UK denote the universal cover of XK . Since
the fundamental group of any complex is carried by its 2- skeleton, it follows
that UK is the 2-skeleton of the cubical complex of Rn, i.e., the complex on
Rn whose n- cells are integer translates of the unit cube In.

It is easy to see that FΓ/F ′
Γ = Zn, the free abelian group of rank n. Thus

FK is the abelianization of FΓ, and moreover, regarding Γ as a subgraph of
K, the induced map α : FΓ → FK is the natural projection of FΓ onto its
abelianization. The inclusion map i : XΓ → XK realizes α and we have that
F ′

Γ = ker(i∗) is realized by UΓ in the pullback diagram

XΓ XK

UΓ UK

-

-

? ?

Hence XΓ is the subcomplex of UK obtained by deleting the lifts of all
2-cells in XK which correspond to non-adjacent vertices of Γ.

3 Homotopies in XΓ

Let w be a word on V ±1 representing an element [w] ∈ FΓ. Then, see [5] ,
w can be transformed into a word of shortest length representing [w] via a
finite sequence the following moves

M1; delete the subwords a−1a or aa−1, and
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M1; replace a subword a±1b±1 with b±1a±1, if (a, b) ∈ E.

In particular, if [w] = 1, then w can be transformed into the empty word by
a finite sequence of these moves.

Let Z be a covering space of XΓ, and let Z have the induced cell structure.
Let p : I → Z be any cellular loop in Z which is path homotopic to the
constant loop. Then, by the above, there is a sequence of path homotopies
p = p1 → p2 → · · · → pk = ∗ connecting p to the constant loop *, with each
pi cellular, such that the homotopy pi → pi+1 is supported either by pi, in
the case of a move of type M1, or, in the case of a move of type M2, by pi∪F ,
where F is a face of Z which intersects pi in at least two incident edges, (i.e.
two edges which have a common endpoint. Let Y be a subcomplex of Z such
that every face of Z which intersects Y in at least two incident edges also
belongs to Y .

It follows that any loop in Y which is path homotopic to the constant
path in Z is also path homotopic to the constant path in Y . This shows

Proposition 1 Let Z be a cover of the Cayley complex of FΓ, and let Y
be a subcomplex of Z with the property that any face of Z which contains at
least two incident edges of Y is also a face of Y . Then the inclusion map
i : Y → Z induces a monomorphism i∗ : π1(Y ) → π1(Z).

We note that this yields a geometric proof of the fact that a full subgraph
Ω ≤ Γ induces an injection FΩ → FΓ.

4 Surface Subgroups of the n-gon Group

Let Cn denote the n-gon, and Fn its graph group. As in section 2, realize F ′
n

by a subcomplex Un of the cubical lattice of Rn. Consider the subcomplex
In of Rn. Since In is convex, every 2-cell of Rn which intersects In in two
edges is also a 2-cell of In, and so Y = Un ∩ In has the same property with
respect to Un. Thus, by proposition 1, it follows that π1(Y ) is a subgroup of
F ′

n. We now show that Y is a 2-sided surface.
Every edge of In corresponds to a vertex v in Cn, and is incident to n-1

faces, one for each of the other n-1 vertices in Cn. Y contains exactly two of
these faces; those corresponding to the two vertices in Cn which are adjacent
to v. Thus Y is a connected 2-complex in which every edge is incident to
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exactly two faces, so Y is a surface. Y is 2-sided since it is a subcomplex of
the 2-skeleton of In.

It remains only to compute the genus of Y . In has 2n vertices, n2n−1

edges, and ( n
2 ) 2n−2 faces, with 2n−2 faces for each of the ( n

2 ) pairs of vertices
in Cn. Since only n of these pairs are adjacent in Cn, Y has only n2n−2 faces,
and the euler characteristic of Y is

ε(Y ) = 2n − n2n−1 + n2n−2 = (4− n)2n−2,

and the genus of Y is g(Y ) = 1 − ε(Y )
2 = 1 + (n − 4)2(n−3). Thus we have

shown

Theorem 2 Let Fn be the graph group of the n-gon graph. F ′
n contains a

subgroup isomorphic to the fundamental group of the orientable surface of
genus 1 + (n− 4)2n−3.

5 Commutator Subgroups of Graph Groups

Let Γ = (V,E) be a graph. A word w on V ±1 represents an element of
F ′

Γ if and only if the exponent sum on each letter of V in w is 0. This is
because the the exponent sum of each vertex in each relator in the graphic
presentation for FΓ is 0. We have noted that if Σ is a full subgraph of Γ,
then the vertices of Σ generate a subgroup of FΓ isomorphic to FΣ. It follows
that F ′

Σ = FΣ ∩ F ′
Γ.

A graph is said to be triangulated if it contains no full subgraph isomorphic
to an n-gon with n ≥ 4.

Theorem 3 If Γ is finite, then F ′
Γ is free if and only if Γ is triangulated.

Proof: If Γ contains a full n-gon with n ≥ 4, then F ′
Γ contains a surface

group of positive genus, and so cannot be free.
Conversely, suppose Γ is triangulated. If Γ is a complete graph then F ′

Γ
is trivial, so we suppose Γ is not complete. Then, see [3], Γ is the union of
two full subgraphs X and Y such that X ∩ Y is either complete or empty.
Comparing presentations, we see that FΓ is the amalgamated free product of
FX with FY over FX∩Y . X and Y are both triangulated since they are full
subgraphs of Γ. Therefore, by induction, FX ∩ F ′

Γ = F ′
X and FY ∩ F ′

Γ = F ′
Y ,
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are both free, and FX∩Y ∩F ′
Γ = F ′

X∩Y = 1 since FX∩Y is abelian. Thus, since
F ′

Γ is normal in FΓ, F ′
Γ is free by the Kurosh subgroup theorem. 2

The following theorem will allow us to conclude that the commutator
subgroups of some graph groups are not graph groups.

Theorem 4 Let Γ contain no full squares, and let x ∈ F ′
Γ, x nontrivial.

Then the centralizer of x in FΓ, cent(x), is free abelian, and the centralizer
of x in F ′

Γ, cent(F ′
Γ; x), is cyclic.

Proof: Recall from section 1 the notation of the centralizer theorem.
We may suppose that x is cyclically reduced. Since x 6= 1 and x ∈ F ′

Γ ∩
Fsupp(x) = F ′

supp(x), supp(x) must contain two non-adjacent vertices, say a
and b. Therefore link(x) induces a complete subgraph of Γ, since if c and
d are non-adjacent vertices of link(x), then a, b, c and d form a full square.
See figure 1. By the same argument, the supports of all but one of the pure
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Figure 1: Two views of the square

factors of x induce complete subgraphs of Γ. Since each pure factor lies in
F ′

Γ, it follows that x has only one pure factor r. Therefore, by the Centralizer
Theorem, cent(x) =< r > ⊗ < link(x) >, which is free abelian. Also,

cent(F ′
Γ; x) = cent(x) ∩ F ′

Γ =< r > x < link(x) >′=< r >,

since < link(x) > is free abelian. 2

Corollary 1 If Γ contains no full squares and FΓ′ is a graph group, then
F ′

Γ is free.

Proof: If F ′
Γ is a graph group with graph Σ, then, since the valence of any

vertex σ in Σ is equal to the rank of the abelianization of cent(σ) in FΣ. By
theorem 3, cent(σ) is cyclic, so Σ is discrete and F ′

Γ is free. 2
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Corollary 2 If Γ contains no full squares but does contain a full n-gon for
n > 4, then F ′

Γ is not a graph group.

Proof: Let C be a full subgraph which is an n-gon, n > 4. Then F ′
C =

FC ∩ F ′
Γ is a subgroup of F ′

Γ, and so, by Theorem 1, F ′
Γ contains a surface

group of positive genus. No surface group is free, hence F ′
Γ is not free and,

by Corollary 1, not a graph group. 2
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