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Our point of departure is the paper [7] in which a problem of M. C.
Escher is solved using methods of contemporary combinatorics, in par-
ticular, Burnside’s lemma. Escher originally determined (by laborously
examining multitudes of sketches) how many different patterns would
result by repeatedly translating a 2 × 2 square having its four unit
squares filled with copies of an asymmetric motif in any of four as-
pects. In this note we simplify the problem from two dimensions to
one dimension but at the same time we generalize it from the case in
which a 2× 2 block stamps out a repeating planar pattern to the case
in which a 1 × n block stamps out a repeating strip pattern.

The 1 × 2 case

Suppose we are tiling a strip by a single rectangle containing an
asymmetric motif, say , a motif taken from South African beadwork
which is a rectangle divided by a diagonal into two triangles, one solid
red, and the other yellow with a green stripe. The original motif has
three additional aspects, namely the motif rotated by 180◦, reflected
in a vertical line and in a horizontal line. We note the motif by b and
its other aspects as follows:

b = p = q = d =

since the letters p, q and d are the corresponding aspects of the letter
b under these transformations. This notation was first introduced in
[9] to encode the symmetry groups of strip patterns.

Assume that we may select any two aspects from {b, q} (with repe-
tition allowed) to form a signature for a 1 × 2 block of two rectangles
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containing those aspects of the motif. There are four possible signa-
tures:

bb : bq : qb : qq : .

By repeating a 1×2 block horizontally and removing the outline of the
rectangles, each signature determines uniquely a 2–way infinite strip
pattern:

bb∗ = · · · bbbbbb · · · =

bq∗ = · · · bqbqbq · · · =

qb∗ = · · · qbqbqb · · · =

qq∗ = · · · qqqqqq · · · =

The patterns bq∗ and qb∗ differ only by translation and so we write
bq∗ = qb∗. Similarly, the pattern bb∗ can be turned into qq∗ by rotating
the strip by 180◦, so we have as well bb∗ = qq∗ and thus there are only
two different patterns.

If we repeat the above construction of the patterns, but allow the
two-letter signature to be any ordered pair of aspects chosen from
{b, q, d, p}, the number of possible signatures increases to 16. If we
do not distinguish between patterns that can be obtained from each
other by translations and rotations, we will find that there are six pat-
terns.

bb∗ = qq∗ = · · · bbbbbb · · · =

bq∗ = qb∗ = · · · bqbqbq · · · =

bd∗ = pq∗ = db∗ = qp∗ = · · · bdbdbd · · · =

bp∗ = dq∗ = pb∗ = qd∗ = · · · bpbpbp · · · =

dd∗ = pp∗ = · · · dddddd · · · =

dp∗ = pd∗ = · · · dpdpdp · · · =

If, however, we do not distinguish between patterns which are mirror
images of one another, then the first four complete the list.

The key observation is that we do not actually have to construct
the strip patterns and observe them in order to determine how many
different ones there are. Since the patterns are determined by the
signatures, the method is to study what permutations of signatures do
not change the pattern. The general model can be set up as follows.
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We are given a set of permutations P that generates a group 〈P 〉
which acts on the set of signatures S = {w1, w2, . . .}, where each per-
mutation in P transforms each signature into one that produces the
“same” strip pattern, with the choice of group determining the defi-
nition of sameness. To count how many different strip patterns there
are, we have to determine the number of orbits under the action of 〈P 〉
on S. The perfect tool for counting the number of orbits is Burnside’s
lemma: The number of orbits equals the average number of points fixed
by the permutations in the group.

More precisely, Burnside’s lemma says that the number of orbits N
of the group 〈P 〉 acting on S is

N =
1

|〈P 〉|
∑

p∈〈P 〉

|fix(p)|

where fix(p) is the set of signatures fixed by the permutation p.
Burnside’s lemma, also called the Cauchy-Frobenius lemma in the

literature, has a long history, which can be found in [5, 11], but still
has its place in advanced texts, e.g. see [10].

Let us say the group 〈P 〉 is generated by two elements T and R. T
interchanges the first and second elements of the signature, T (XY ) =
Y X, and corresponds to a 1-unit horizontal translation of the strip pat-
tern. R replaces each aspect with its rotated aspect and interchanges
their order in the signature: R(XY ) = R(Y )R(X), where R(b) = q,
R(q) = b, R(p) = d and R(d) = p. R corresponds to a 180◦ rotation of
the strip pattern.

The group 〈P 〉 = 〈T,R | T 2 = R2 = (TR)2 = I〉 is isomorphic
to the Klein four group. Its Cayley graph is shown in Table 1 below:
the group elements are represented as vertices. The horizontal edges
correspond to multiplication by T , vertical edges to multiplication by
R. In Table 1 we also show the action of the group 〈P 〉 on the four
signatures bb, bq, qb, qq, and see that there are a total of 8 signatures

I T

RTR
I R T RT

bb bb qq bb qq

bq bq bq qb qb

qb qb qb bq bq

qq qq bb qq bb

Table 1. 〈P 〉 and its action on four signatures

fixed by elements of 〈P 〉 (boxed). Since the group 〈P 〉 has 4 elements,
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Burnside’s lemma confirms the number of distinct patterns for 〈P 〉
acting on signatures with two aspects to be 8/4 = 2.

If we extend Table 1 to include 16 rows of signatures to account for
all four aspects, we obtain a total of 24 signatures fixed by elements of
〈P 〉, which are shown boxed in the first 4 columns, and so the formula
in Burnside’s lemma gives the number of distinct patterns as 24/4 =
6. See Table 2.

I T

RTR

��M TM

RTMRM

��

�� ��

I R T RT M RM TM RTM

bb bb qq bb qq pp dd pp dd

bq bq bq qb qb pd pd dp dp

qb qb qb bq bq dp dp pd pd

qq qq bb qq bb dd pp dd pp

bp bp dq pb qd pb qd bp dq

bd bd pq db qp pq bd qp db

qp qp db pq bd db qp bd pq

qd qd pb dq bp dq bp qd pb

pb pb qd bp dq bp dq pb qd

pq pq bd qp db bd pq db qp

db db qp bd pq qp dq pq bd

dq dq bp qd pb qd pb dq bp

pp pp dd pp dd bb qq bb qq

pd pd pd dp dp bq bq qb qb

dp dp dp pd pd qb qb bq bq

dd dd pp dd pp qq bb qq bb

Table 2. 〈P ′〉 and its action on 16 signatures

To regard the strips as identical even after orientation reversing-
transformations, we extend the group 〈P 〉 by adding another generator,
the mirror M , where M acts on signatures by M(XY ) = M(X)M(Y ),
where M(b) = p, M(p) = b, M(q) = d and M(d) = q. This corre-
sponds to taking the mirror image of the infinite strip in a horizontal
line, and, together with the transformations we already have, allows
us to consider strip patterns as identical if they differ by orientation-
preserving as well as orientation-reversing transformations. Let P ′ =



5

{T,R,M}. The extended group 〈P ′〉 has presentation

〈T, R,M | T 2 = R2 = M2 = (TR)2 = (TM)2 = (RM)2 = I〉

has 8 elements and is isomorphic to the direct product of three copies
of the cyclic group on 2 elements. Table 2 shows also the Cayley graph
of 〈P ′〉 in which the three sets of mutually parallel edges correspond
to multiplication by R, T and M , respectively. Table 2 shows the
action of 〈P ′〉 on the sixteen signatures; there are 32 signatures fixed
by elements of 〈P ′〉 (boxed).

Note: M mirrors the aspects in a horizontal mirror. We could have,
alternately, used a vertical mirror MV which mirrors aspects b and d, p
and q; however the three groups generated by {T, R,M}, {T,R,MV },
and {T,R,M,MV } are all the same since MV = MRM , and M =
MV RMV . Try to draw the corresponding Cayley graphs!

From Table 2 and Burnside’s lemma, we obtain the result of 32/8 = 4
different strip patterns with four motif aspects, confirming our earlier
observation for the ‘beadwork’ pattern.

In fact, from the first four columns of Table 2, we can determine the
previously computed number of patterns up to rotation and translation,
with either all four aspects, all 16 rows, or just two aspects, the first 8
rows.

The main purpose of this note is to generalize the approach from
the 1 × 2 case to the general case 1 × n, n ≥ 1. The permutation
groups become much more complicated and the sets of signatures on
which they act grow much larger. To understand the general case it is
enough to consider two relatively small representatives.

The 1 × 12 case

Let’s compute the number of patterns arising from a strip of length
12 filled with choices from all four aspects, regarding patterns to be
the same up to translation, rotation and reflection, that is, using the
extended group, 〈P ′〉.

To study the transformations of the signature, it is convenient to
think of the signature as being drawn on the surface of a ring with
12 marked sections, such as in Figure 1 where the initial point in the
signature is marked with a small triangle.

In fact, this is how you can create the strip patterns in practice; by
inking the ring and then rolling out the pattern!

Any symmetric transformation of the ring clearly yields the the same
pattern. Rotationally, the ring has dihedral symmetry, and the rotation
group is generated by two rotations. The first is a rotation of 30◦ about
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Figure 1. The signature w = bbddbbppqqpp on a ring,
and T 4M(w), and their pattern. T 6M(w) = w, so w ∈
fix(T 6M).

the vertical axis through the center of the ring and corresponds to a
translation of the strip pattern by one unit. We denote it by T :

T (a1a2 . . . a12) = a2a3 . . . a12a1.

The second is a 180◦ rotation about the axis passing through the center

Figure 2. Transforming the signature on a 12-ring.

of the ring and passing through the midpoint of the initial boundary
of the first motif, and corresponds to a 180◦ rotation of of the strip
pattern. We denote it by R and its action on the signature is

R(a1a2 . . . a11a12) = R(a12)R(a11) . . . R(a2)R(a1).

See Figure 2.
The elements T and R generate the dihedral group D12 in the usual

way:
〈P 〉 = 〈T, R | R2 = T 12, RTR = T−1〉

The orientation-reversing transformations can be added by adding
the generator M which is a reflection in the horizontal plane that bisects
the ring,

M(a1 . . . a12) = M(a1) . . . M(a12),

and corresponds to a reflection of the strip pattern in a horizontal line;
see Figure 2. We get the following presentation for 〈P ′〉:
〈T, R,M | T,R | I = R2 = T 12, RTR = T−1, TM = MT, RM = MR〉.
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Of course, it is convenient to describe groups in terms of generators
and relations, but that really doesn’t help us in using Burnside’s lemma,
since we have to take the mean over all the elements of the group, not
just the generators. Fortunately, at least for the dihedral group and its
extension, we can easily visualize all the transformations. See Figure 3.

a) b)

Figure 3. a) The axes of the rotational symmetries of
the ring and b) the planes of the mirror symmetries, b.

All of the 24 transformations in 〈P 〉 are rotational symmetries of
the ring. There are 12 rotations of 180◦ around axes in the horizon-
tal plane through the center of the ring, see Figure 3a. Of these, 6
have axes passing through the centers of two opposite motifs, and so
fix no signatures since the motifs are asymmetric. The other six have
axes on the midpoints of motif boundaries, with the motifs being di-
vided into 6 pairs of orbits. So there are 6 · 46 fixed signatures for
these transformations. See Figure 4, in which 6 independent choices

Figure 4. Creating a fixed signature for a horizontal
axis rotation.

(b, d, d, p, b, q) for the first six positions in the signature yield the fixed
signature bddpbqbqdppq.

The other 12 transformations in 〈P 〉 are rotations about the vertical
axis of i

12
360◦ = i · 30◦, i = 1 . . . 12. If i and 12 have a common divisor

k, where i = pk and 12 = qk, then q · (i · 30◦) is a multiple of 360◦

and so this rotation has motif orbits of size a divisor of q. In fact, it is
easy to see that the orbits of i · 30◦ are of size 12/ gcd(i, 12), and there
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Figure 5. Orbits of rotations of a 12-gon.

are gcd(i, 12) of them. See Figure 5. So, for each divisor k of 12 there
are rotations with aspect orbit sizes k. Each of these will have 412/k

fixed signatures, since we are free to choose any of the four aspects
for each orbit. See Figure 6 in which 4 independent choices (b, d, d, p)

Figure 6. Creating a fixed signature for a vertical axis rotation.

for the first four positions in a signature and a 3 · 180◦

12
rotation yield

the fixed signature bddpbddpbddp. Twelve has divisors 12, 6, 4, 3, and
2. For 12 there will be 4 rotations with orbit size 12, corresponding
to i = 1, 5, 7, 11, which is the number of positive integers less than 12
which are coprime to 12, giving 4 · 41 fixed signatures. For 6 there are
two rotations of orbit size 6, i = 2, 10 = 1 · 12

6
, 5 · 12

6
, with 1 and 5 being

the integers less than 6 coprime to 6; we get 2·42 fixed signatures. For 4
there are two rotations of orbit size 4, i = 3, 9 = 1· 12

4
, 3· 12

4
, with 1 and 3

being the integers less than 4 coprime to 4; we get 2·43 fixed signatures.
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For 3 there are two rotations of orbit size 3, i = 4, 8 = 1 · 12
3
, 2 · 12

3
, with

1 and 2 being the integers less that 3 coprime to 3; we get 2 · 44 fixed
signatures. For 2 there is one rotations of orbit size 2, i = 6 = 1 · 12

2
,

with 1 the only integer less than 2 coprime to 2; we get 1 · 46 fixed
signatures. For 1 there is one rotation of orbit size 1, i = 12; we get
1 · 412 fixed signatures

The reader may recall that the number of positive integers less than
k which are coprime to k is denoted by ϕ(k) and is called the Euler phi
function. So we have for the rotations about the vertical axis

ϕ(12)·412/12+ϕ(6)·412/6+ϕ(4)·412/4+ϕ(3)·412/3+ϕ(2)·412/2+ϕ(1)·412/1

fixed signatures.
For the 24 orientation-reversing symmetries, twelve are reflections

in a vertical mirror, see Figure 3b. Six of these mirrors pass through
the center of a motif, and so have no fixed signatures, while the other
six mirros pass through the boundaries of the aspects, each of which
has 6 aspect orbits of size 2 each, for a total of 6 · 46 fixed signatures.
See Figure 7 in which 6 independent choices (b, d, d, p, b, q) for the first

Figure 7. Creating a fixed signature for a reflection.

six positions in a signature yield the fixed signature bddpbqpdqbbd.
The other 12 orientation-reversing transformations are not reflections
at all, but are the product of one of the twelve rotations on the vertical
axis with the reflection in the horizontal mirror, and are called rotary
reflections. We have already analyzed the aspect orbits under these
rotations. The only difference now is that, with the horizontal mirror,
if the aspect orbit size is odd, specifically for k = 3 and 1, (i = 4, 8, 12)
there will be no fixed signatures since, following the aspect through its
orbit, the aspect would return to its original position on the ring as a
reflected aspect. For example, in Figure 8a we have chosen aspects b, b,
and q respectively for the first three positions of a rotatory reflection of
angle 90◦, one for each of the three orbits, yielding the fixed signature
bbqppdbbqppd. Trying the same method, Figure 8b, and choosing b, b,
q, and b for the first four positions with the rotary reflection of 120◦,
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a) b)

Figure 8. A fixed signature for a rotary reflection.

with rotational order 3, gives the signature bbqbppdpbbqb which is not
a fixed signature under the 120◦ rotary reflection.

So, omitting the odd divisors, there are

ϕ(12) · 412/12 + ϕ(6) · 412/6 + ϕ(4) · 412/4 + ϕ(2) · 412/2

signatures fixed by rotary reflections.

The 1 × 15 case

For a ring of size 15, the rotations with vertical axis, and their rotary
reflections are analyzed just as before, see Figure 9. Thus there are

Figure 9. Orbits of rotations of a 15-gon.

ϕ(15) · 415/15 + ϕ(5) · 415/5 + ϕ(3) · 415/3 + ϕ(1) · 415/1

fixed signatures for the first kind and no fixed signatures of the second
because 15 has no even divisors.

The main difference here is that, since the ring is of odd size, every
180◦ rotation about a horizontal axis has one pole of the axis passing
through the midpoint of an aspect boundary and the other passing
though the center of the aspect, see Figure 10. None of these will have
fixed signatures since the motif is assumed to be asymmetric. Similarly,
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Figure 10. Axes and mirrors of a 15-ring.

each vertical mirror passes through an aspect boundary on one side of
the ring, and passes through the middle of an aspect on the opposite
side, again see Figure 10, so these also yield no fixed signatures because
of the asymmetry of the individual motifs. Thus the total number of
fixed signatures is 8 · 415/15 + 4 · 415/5 + 2 · 415/3 + 1 · 415/1.

The 1 × n case

In the general case, the group 〈T, R,M〉 has elements:
Vertical axis rotations T i

Horizonal axis rotations T iR
Vertical reflections T iRM
Rotary reflections T iM .

and acts on a signature w = Q1Q2 · · ·Qn, Qi ∈ {b, q, d, p} via
Translation: T (Q1Q2 · · ·Qn) = Q2Q3 · · ·QnQ1.
Rotation: R(Q1Q2 · · ·Qn) = R(Qn) · · ·R(Q2)R(Q1).
Mirror: M(Q1Q2 · · ·Qn) = M(Q1)M(Q2) · · ·M(Qn).
For the vertical axis rotations the number of fixed signatures if there

are two aspects is

v(n) =
∑
k|n

ϕ(k)2n/k,

while if there are 4 aspects the number is

V (n) =
∑
k|n

ϕ(k)4n/k.

For horizontal axis rotations the number of fixed signatures if there
are 2 aspects is

h(n) =

{
(n/2)2n/2 for n even and
0 for n odd

,

while if there are 4 aspects the number is

H(n) =

{
(n/2)4n/2 for n even and
0 for n odd.
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For the orientation-reversing transformations, we are only consider-
ing the case with 4 aspects. For the vertical mirror reflections, there
are H(n) fixed signatures and, lastly, for the rotary reflections, there
are

R(n) =
∑

k|n,2|k

ϕ(k)4n/k

fixed signatures.
So, if we consider two aspects and rotational symmetry only, we have

by Burnside’s lemma

f(n) =
v(n) + h(n)

2n

patterns.
If we allow four aspects but only consider rotational symmetry we

have

F (n) =
V (n) + H(n)

2n

patterns.
If we allow four aspects and consider mirror symmetry as well, there

are

G(n) =
V (n) + 2H(n) + R(n)

4n

patterns.
The number of orbits for each of the three cases, where n = 1, . . . , 30

is given in Table 3. The sequence of numbers f(n) appears as sequence
with ID number A053656 in Sloane’s On-Line Encyclopedia of integer
sequences [8], where it is described as arising from the number of neck-
laces with n blue or red beads such that the beads switch color when
the necklace is turned over, which is clearly equivalent to our situation.
Our interpretation of f(n) via the number of strip patterns is more
naturally motivated than color switching-beads.

Note that G(n) ≈ 2F (n), which is reasonable, since the set of sig-
natures is the same in both cases but the group 〈P ′〉 that acts on it is
double the size of 〈P 〉. G(n) = 2F (n) exactly when n is odd, in which
case R(n) = H(n) = 0.

If n is large, then we expect that most signatures are asymmetric,
and so will have orbit size 4n. This would give us an approximate
count of G(n) ≈ 4n/(4n) which is necessarily an undercount since at
least the signature bbb . . . is symmetric. If n = p, a prime, then this is
the only signature which is not in an orbit of size 4p, so rounding up
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n f(n) F (n) G(n)
2 motifs 4 motifs 4 motifs
rotational group rotational group full symmetry group

1 1 2 1
2 2 6 4
3 2 12 6
4 4 39 23
5 4 104 52
6 9 366 194
7 10 1172 586
8 22 4179 2131
9 30 14572 7286
10 62 52740 26524
11 94 190652 95326
12 192 700274 350738
13 316 2581112 1290556
14 623 9591666 4798174
15 1096 35791472 17895736
16 2122 134236179 67127315
17 3856 505290272 252645136
18 7429 1908947406 954510114
19 13798 7233629132 3616814566
20 26500 27488079132 13744183772
21 49940 104715393912 52357696956
22 95885 399823554006 199912348954
23 182362 1529755308212 764877654106
24 350650 5864066561554 2932035552786
25 671092 22517998136936 11258999068468
26 1292762 86607703209516 43303860638644
27 2485534 333599972407532 166799986203766
28 4797886 1286742822580254 643371447241598
29 9256396 4969489243995032 2484744621997516
30 17904476 19215358696480536 9607679491405864

Table 3. Numbers of strip patterns under different no-
tions of ‘sameness’.

the rough approximation will give the actual value

G(p) =
4p + (p − 1)4

4p
=

4p

4p
+

p − 1

p
.
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In any case, these are large numbers. In the case of G(12), to scan over
all the distinct patterns would take at least 14 days at a rate of one
pattern per second and working 8 hours a day. For G(15), the other
case we examined, it would take more than a year.

Note also that the results are valid only in the case each motif is
asymmetric: R(X) and M(X) are assumed to be distinct from X. We
leave it to the reader to discover the formula for f(n, ma, ms) for a more
general case when there are ma asymmetric motifs with R(X) distinct
from X and ms symmetric motifs with R(X) = X.

The 1 × 4 case: Escher revisited

In Table 3, we see that G(4) = 23, which is exactly the number of
different planar patterns that Escher found in answer to his original
problem. The occurence of the same numbers is not a coincidence; in
fact, the 1 × 4 strip pattern problem corresponds exactly to Escher’s
2 × 2 problem.

In each case, there are four units that are filled with aspects of an
asymmetric motif chosen from a set of four aspects. In our 1× 4 case,
the aspects are all obtained from aspect b by the action of a Klein-four
group generated by the unit translation T and 180◦ rotation R. In
Escher’s case, the aspects were all obtained from aspect b by by the
action of a cyclic group of order 4, generated by a 90◦ rotation.

Also, in each case, the group that acts on signatures for the patterns
has order 16; it is a semi-direct product of a cyclic group of order 4
and a Klein four-group. In our 1×4 case, the cyclic group is generated
by T , and the Klein four-group is generated by R and M . In Escher’s
case, the cyclic group was generated by a permutation induced by a
90◦ rotation of the 2×2 block, and the Klein four-group was generated
by permutations induced by horizontal and vertical unit translations
of the 2 × 2 block. If signatures for Escher’s 2 × 2 blocks are written
as a string WXY Z that represents the aspects in a 2 × 2 block read
in clockwise cyclic order, beginning with the upper left unit, then the
action on signatures of the three generators for the “Escher group” is
exactly the same as the action of T , R, and M on signatures in our
1 × 4 case.
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Table 4 shows the G(4) = 23 strip patterns with their signatures
ordered ‘lexicographically’, (b < q < p < d).

1 bbbb

2 bbbq

3 bbbp

4 bbbd

5 bbqq

6 bbqp

7 bbqd

8 bbpq

9 bbpp

10 bbpd

11 bbdq

12 bbdp

13 bbdd

14 bqbq

15 bqbp

16 bqbd

17 bqpd

18 bqdp

19 bpbp

20 bdbp

21 bdbd

22 bdqp

23 bdpq

Table 4

The f(4) = 4 patterns with two aspects are in rows 1, 2, 5, and 14.
It is well-known that there are exactly seven symmetry groups of strip

patterns. The notation for these groups are: 11 (translations only –
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bb∗); 12 (translations and 180◦ rotations – bq∗); m1 (translations and
vertical mirrors – bd∗), 1g (translations and glide-reflections – bp∗); mg
(translations, 180◦ rotations, vertical mirrors, glide-reflections – bdpq∗);

1m (translations and horizontal mirror – bb
pp

∗
); and mm (translations,

180◦ rotations, vertical mirrors, glide-reflections, and horizontal mirror

– bd
pq

∗
).

All five without reflection symmetry in a midline mirror parallel to
the edges of the strip occur in the patterns in Table 4. Most patterns
have only translation symmetry. Here is the distribution of symmetry
types:

Type 11 bb∗ 13 patterns
Type 12 bq∗ 3 patterns
Type 1g bp∗ 2 patterns
Type m1 bd∗ 3 patterns
Type mg bdpq∗ 2 patterns

Escher pursued several generalizations of his original problem, and
these in turn have spawned many others: generalize to an m × m
block with aspects chosen from a set of n aspects; generalize to higher
dimensions; if the motif has under-over weave, allow inversion of over-
under relationships to be a group operation; color the pattern so that
overlapping strands do not share the same color; automate the pattern-
creating process and pattern-coloring process. Many of these problems
have been solved, and several are still under investigation. We list some
published work on these problems in the references.
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