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Abstract. We examine how the symmetry of a self-dual polyhedron affects
its rank, answering some questions in [4]

A polyhedron P is said to be self-dual if there is an isomorphism δ : P → P ∗,
where P ∗ denotes the dual of P . We may regard δ as a permutation of the elements
of P which sends vertices to faces and vice versa, preserving incidence. For example,
the regular tetrahedron and its dual are isomorphic, and the self-dual permutation
may be taken to correspond to the antipodal map.

The character of the permutation δ has only recently been considered. In [3] an
example of a self-dual polyhedron is given for which no self-dual permutation has
order 2. Given a self-dual polyhedron P , the least order of any self-duality is called
the rank of P , r(P ). It is easy to see that r(P ) must be a positive power of 2.

The possible symmetries of a self-dual polyhedron were enumerated in [4], and
the following result is stated which indicates how the symmetry class can affect the
rank.

Theorem 1. If a self-dual polyhedron P has a central symmetry, then r(P ) is either
2 or 4.

The symmetry does not completely determine the rank, as the following example
illustrates. Figure 1 shows Schlegel diagrams of four self-dual polyhedra, each with
symmetry group [4]+. All have rank 2 except Figure 1b, which has rank 8.

In [5] it is shown that every self-dual polyhedron P corresponds to a bi-colored
map M on the sphere obtained by embedding the graph of P (one color) together
with the graph of P ∗ (second color), such that the automorphism group of the map
M , Aut(M), is one of the isometry groups of the sphere, and [Aut(M),Aut(P )] = 2.
In this setting the self-dualities correspond to the elements in Aut(M) − Aut(P ).
We call Aut(M) B Aut(P ) the self-dual pairing of P . For example, the pairing
corresponding to the regular tetrahedron is [3, 4] B [3.3], which reflects the usual
embedding of the pair of dual tetrahedra in the cube, (see [2] for the notation of
the isometry groups of the sphere).

The self-dual pairings were catalogued in [6], and the pairing does determine the
rank.

Theorem 2. If Aut(P ) = [2]+ or Aut(P ) = [2, 2+], then r(P ) may be either 2 or
4.

If Aut(P ) = [q]+, q > 2, then r(P ) may be either 2 or q/s, where s is the largest
odd divisor of q.

If Aut(P ) ∈ {[q], [2, 2], [2, 2]+, [2+, 2+], [2+, 4+], [2+, 4], [3, 3], [3, 3]+}, then r(P ) =
2.
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a) b)

c) d)

Figure 1. Self-dual polyhedra with fourfold rotational symmetry.

Proof. If Aut(P ) = [2]+, then its pairing is either [2, 2]+ B [2]+, [2, 2+] B [2]+, in
which case r(P ) = 2, or [4]+ B [2]+ for which r(P ) = 4.

If Aut(P ) = [2, 2+], then the pairing of P is either [2, 2] B [2, 2+], so r(P ) = 2,
or [2, 4+] B [2.2+], in which case r(P ) = 4.

If Aut(P ) = [q]+, q > 2, then the pairing of P is [2, q]+ B [q]+, (for q = 4
see Figure 1a and d), [2, q+] B [q]+ (see Figure 1c), in which case r(P ) = 2, or
[2, 2q+] B [q]+ (See Figure 1b), in which case the rank is q/s.

�

In particular, if P has any symmetry excepting rotational symmetry, then r(P )
is 2 or 4.
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