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Abstract. We show how to recursively construct all self–dual maps on the

sphere together with their self–dualities, and classify them according to their

edge–permutations.

Although several well known classes of self–dual graphs, e.g., the wheels, have
been known since the last century, [7], the general characteristics of self–dual graphs
have only recently begun to be explored. In [10] two constructions are given to
produce examples of large minimally self–dual graphs. In [2] self–dual polyhedra
are constructed and classified.

Given a self–dual object, Grünbaum and Shephard [5] considered the self–dual
correspondence as a permutation on the elements of the object itself, and asked if
every self–dual object admitted a self–duality permuation of order 2. The question
was answered negatively for polyhedra by Jendrǒl [6] and by McCanna [8] and
prompted a re–examination of self–dual polyhedra, [3]. In this article, we examine
the more general setting of self–dual maps on the sphere, making no assumptions of
higher connectivity on the underlying graphs, allowing a clear and unified approach.

1. Automorphisms of maps on the sphere

Let Γ = (V,E) be a finite connected planar graph, so there exists a tame em-
bedding ρ of Γ into the sphere, S2. We regard two such embeddings, ρ and ρ′, as
equivalent if there is a homeomorphism f of S2 such that ρ′ = fρ. The graph Γ
may have parallel edges and loops, in which case there will be several inequivalent
ways to place Γ in S2. On the other hand, if Γ is 3–connected, then all embeddings
of Γ are equivalent up to orientation. Unless there is danger of confusion, we will
hereafter suppress mention of ρ. S2 − Γ consists of a disjoint union of open cells
whose closures in S2 are the faces of a realization of S2 as a finite CW–complex, G,
called a map on the sphere, or more briefly, just a map. An isomorphism of maps
will be understood to be an isomorphism of cell complexes and we note that the
CW–complex arising from an embedded graph will not in general be regular. By
straightforward subdivision arguments one can show the following two propositions.

Proposition 1. Every non-trivial orientation preserving map automorphism σ has
exactly two fixed cells. Moreover, the map can be drawn so that σ is a rotation of
S2.

Proposition 2. Suppose σ is an orientation reversing map automorphism. If σ2

is the identity, and some cell is sent into itself by σ, then the map can be drawn so
that σ is a reflection of S2 about an equator. If σ2 is the identity and σ fixes no
cell, then the map may be drawn such that σ is the antipodal map. If σ2 is not the
identity, then the map may be drawn so that σ is a rotatory reflection.
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Note that when a map is drawn, as in the above propositions, to reflect the
geometry of some map automorphism, the edges cannot in general be chosen to be
geodesics.

Any map G determines a dual map, G∗, obtained by placing a vertex f∗ in the
interior of each face f and, if two faces f and f ′ meet along an edge e, then an edge
e∗ is drawn connecting f∗ and f ′∗ such that e∗ intersects G only once transversely
in the interior of the edge e. Each vertex v will then lie in the interior of a face v∗

of G∗. A map G is said to be self–dual if G and G∗ are map isomorphic. A planar
graph Γ is said to be self–dual if there is a map G of Γ in S2 such that the 2–skeleton
of G∗ is isomorphic to the graph Γ. The example in Figure 1 shows that not all self–
dual graphs arise in this manner. The graph and its dual are pictured. There is no
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Figure 1. Self–dual graphs admitting no self–dual map

map isomorphism between them since the order of the objects attached to the large
2–cycle in the graph is incompatible with their order in the dual. Furthermore, it
is easy to check that every other embedding of this graph is either not self–dual, or
exhibits the same problem. Of course, such examples exist only among graphs of
connectivity less than three.

Given a map G = (V,E, F ), we can perform the dual construction and regard
the superposition of the dual map with the original map as single map, G2, whose
vertex set consists of the vertices V of G, the vertices F ∗ of G∗, and those points
where the edges of G and G∗ cross, denoted by (E ∩ E∗), so the edges of G2 are
the “half–edges” of G and G∗, and every face of G2 is a quadrilateral. We will
color the half–edges in G2 originating from G and G∗ differently, say red and blue
respectively. The following is clear.

Proposition 3. Every map isomorphism δ from G to G∗ induces a unique color
reversing map automorphism δ2 of G2 and conversely.

We call a color reversing map automorphism δ2 of G2 a self–duality of G, and
define its edge permuation, ∆ : E → E, by ∆(e) = δ(e)∗. Equivalently, we can
consider ∆ to be the permutation induced by δ2 on those vertices of G2 which are
incident to edges of both colors, from which it is clear that ∆2(e) = δ2

2(e). We note
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that the self–duality permutation considered in [5] corresponds to the permutation
of all the vertices of G2 induced by δ2.

Theorem 1. Let G be a self–dual map, δ2 : G2 → G2 a self–duality of G. Then δ2

is realized by one of the following:
(1) a rotation of order 4, the poles being two elements in E ∩ E∗.
(2) a rotation of order 2, the poles lying in the interiors of two quadrilaterals.
(3) the antipodal map.
(4) a simple reflection with equator intersecting the graph of G2 only at vertices

in E ∩ E∗.
(5) a rotatory reflection of order 4 with poles at two vertices in E ∩ E∗.
(6) a rotatory reflection of order 2k > 2 which has one pole in V and one pole

in F ∗ and for which δk
2 is the antipodal map, a rotation, or a reflection.

Proof. If δ2 is orientation preserving then the map G2 can be drawn so that δ2 is a
rotation. Since δ2 is color reversing, the pole cannot be a vertex of G2 of the form
V or F ∗ nor the interior of a half edge, so a pole of the rotation is either a vertex
in E ∩E∗ or in the interior of a quadrilateral. If it is the interior of a quadrilateral,
then the rotation must be of order 2, otherwise it must be of order 4.

Suppose δ2 is orientation reversing then the map can be drawn so that δ2 is either
the antipodal map, a reflection, or a rotatory reflection of order 2k, k > 1. If δ2

is a color reversing reflection, the objects along the equator can only be vertices of
the form E∩E∗ or interior points of quadrilaterals, see Figure 2. If δ2 is a rotatory
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Figure 2. The equator of a reflection

reflection of order 2k, k > 1, then δ2
2 is a color preserving rotation, and hence the

pole must be a vertex of G2. Since the poles are exchanged by δ2, both vertices will
be either in V ∪ F ∗, or both of the form e ∩ e∗. If the vertex is of the form e ∩ e∗,
then the rotation is of order 2, so δ2 has order 4. �

We note that these six transformations correspond to the six contructions de-
scribed in [2].

To show that all these self–dualities are possible, we will exhibit some self–dual
maps that will be of use later. The two smallest non–trivial self–dual maps both
have two vertices and two edges, and are illustrated in Figure 3. In these figures,
the map and the dual map are superimposed, as in G2, with the vertices of G and
G∗ distinguished by solid and hollow circles, and the vertices of E ∩ E∗ indicated
by simple crossings. The 1–thorned rose map exhibits self–dualities of types 2 and
3, the map of the single dipole exhibits self–dualities of type 1, 2 and 4. For types 5
and 6 we turn to the wheels and the asteras respectively, see Figures 4a and 4b for
examples with a rotatory reflections of order 12 and 6, respectively. In particular,
all asteras and wheels are self–dual. Figure 4e is called a 3–thorned rose. We will see
later that Figure 4b together with its duality is reducible to that of and Figure 4d
or e. Figures 4c and f are examples of dipole trees, that is a tree with doubled
edges, called dipoles. These maps also have a self–duality of type 6. It might be
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Figure 3. The 1-thorned rose and the dipole
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a) A 6 sided wheel b) A 6 sided astera c) A 6 leaved dipole rose
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d) A 3 sided wheel e) A 3 thorned rose f) A 3 leaved dipole rose

Figure 4. Some self–dual maps

less obvious that every dipole tree has a self–dual map and admits a particularly
simple self–duality permutation.

Theorem 2. A graph Γ has a map which admits a reflective self–dualtity δ2 such
that every edge is fixed under ∆ if and only if Γ is a dipole tree.

Proof. Let {e1, e2} be a pendant dipole at v and assume by induction that Γ −
{e1, e2} has a map such that for each vertex v, v and δ2(v) lie on the boundary of
the same quadrilateral. This is trivially true for the single dipole. We may then
add the dipole {e1, e2} along the path from v to v∗ as in Figure 5.

Conversely, if δ2 is a reflection and ∆ fixes every edge, then δ(e) = e∗ for all
e. Consider the star S of a vertex v. Since δ(S) = S∗, and since δ is a map
isomorphism, S is simultaniously the star of a vertex and the boundary of a face,
and so must be pictured as in Figure 6. In particular, every vertex of valence
greater than 2 is a cut vertex, and every cycle is of length 2, and the graph is a
dipole tree. �

Theorem 3. Let G be a self–dual map with self–duality δ2. Then the edge permu-
ation ∆ has one of the following shapes:

(1) two edges fixed, all other cylces of length 4,
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Figure 5. Adding a dipole
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Figure 6. A face which is a star

(2) all cycles of length 2,
(3) all non-trivial cycles of length 2, the edges of the trivial cycles comprising

a closed path in G,
(4) all cycles of length 4 except for one cycle of length 2,
(5) all cycles of length 2k > 2,
(6) all cycles of length 2k > 2 except for a collection of cycles of length k, whose

edges comprise a closed path in G.
Hence we can distinguish the types of non-involutory self–dualities by the shapes of
the cycles in the edge permutation ∆.

Proof. One merely needs to interpret the cases of Theorem 1. We note that if all
the cycles of ∆ are of length 2k, k > 1, then δk

2 is a rotation or the antipodal map if
k is even or odd respectively. Lastly, if the cycles of ∆ consist of one transposition
and one cycle of length 4, δ2 must be a rotatory reflection about two vertices of the
form e ∩ e∗, and not a rotatory reflection about two vertices V ∪ F ∗. �

2. Operations on self–dual maps

In this section we show how all self–dual maps may be recursively constructed
by describing first how to reduce a given self–duality to a “canonical form” using
edge deletion and edge contraction. These dual processes are natural from the point
of view of matroid theory, and have been considered also in [1, 9].

If e is a non-separating edge of G, then let G−e, denote the map G with the edge
e erased, so that the two faces of G which are incident to e become amalgamated in
G−e. If e is not a loop, let G·e denote the dual operation, that is, G·e = (G∗−e∗)∗.
G · e can be described as amalgamating the two endpoints of e by letting e shrink
to a point. See Figure 7.

Lemma 1. Let δ2 : G2 → G2 be a self–duality of order 2k, with the edge permutation
∆ defined by ∆(e) = δ(e)∗. Suppose that |{∆i(e)}| = 2k. The sets {∆2i(e)} and
{∆2i+1(e)} do not both separate G.
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Figure 7. An edge deletion

Proof. If δ2
2 is the identity, then k = 1 and if e is a separating edge it follows that

e∗ is a loop, hence so is δ(e)∗, therefore δ(e)∗ is not a separating edge.
If δ2

2 is not the identity, then δ2
2 is a rotation of order k. If {δ2i

2 (e)} is a separating
set, then {δ2i

2 (e)∗} is a cycle C of length k permuted transitively by δ2
2 , and which

separates S2 into two components. If {δ2i
2 (e)} also formed a cycle of length k, then

k/2 of its vertices would be on one side of C, and k/2 on the other, see Figure 8, but
any rotation that preserves such a structure is at most of order k/2. So {δ2i

2 (e)∗},
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Figure 8. Dual separating cycles

and hence {δ2i+1
2 (e)} as well, is not a separating set. �

A duality reduction is defined as follows. Suppose G has an edge e whose ∆ orbit
has size 2k. Using the lemma, suppose without loss of generality that {δ2i

2 (e)} is
not separating. Then the reduction of G along {δ2i

2 (e)} is the map (G−{∆2i(e)}) ·
{∆2i+1(e)}. The map isomorphism δ : G → G∗ induces a map isomorphism between
(G− {∆2i(e)}) · {∆2i+1(e)} and its dual, since

((G− {∆2i(e)}) · {∆2i+1(e)})∗ = ((G− {δ2i
2 (e)}) · {δ2i+1

2 (e)∗})∗

= (G− {δ2i
2 (e)})∗ − {δ2i+1

2 (e)})
= (G∗ · {δ2i

2 (e)∗})− {δ2i+1
2 (e)})

= (G∗ − {δ2i+1
2 (e)}) · {δ2i

2 (e)∗})
= (δ(G)− {δ(∆2i(e))}) · {δ(∆2i+1(e))}).

The restriction of ∆ to the edges of the reduced graph is the edge permutation of
the reduced self–duality.

As an example of a duality reduction consider the astera of Figure 9 with δ2 being
a rotatory reflection of order 5 and angle 2π/6, with the deletions and contractions
indicated. A different sequence of deletions and contractions will yield the 3–sided
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Figure 9. A sequence of duality reductions

wheel. If the self–duality is changed to the rotatory reflection of angle 2π/3 then
we shall see that the end result must be a dipole tree.

Theorem 4. Every self–dual map G with self–duality δ2 of order 2k is reducible
to to a self–dual map of the same geometric type, and which is either the map of a
thorned rose, a wheel, or a dipole tree.

Proof. If δ2 is a rotation of order 4, every edge orbit is of order 4 except for the two
fixed edges at the poles. When all the 4–cycles have been removed from the map,
only the polar edges remain, and the map is the map of the dipole.

If δ2 is a rotation of order 2, ∆ has only transpositions. When all but one of
them have been removed we are left with a graph on two edges, which may be either
the dipole or the 1-thorned rose.

If δ2 is a reflection, then when all the transpositions are removed from ∆ the
result is a dipole tree by Theorem 2. Similarly, if δ2 is a rotatory reflection and δk

2

is a reflection, so k is odd, then when the cycles of length 2k are removed from ∆
that reflection will fix every edge and the reduced map is again a dipole tree.

If δ2 is a rotatory reflection and δk
2 is the antipodal map or a rotation, then every

edge cycle in ∆ is of order 2k, and if we reduce until there is only one edge cycle, we
arrive at the map of either the k–wheel, or the k–thorned rose, since either half the
edges must be incident to the vertex at one pole, and so half must be the boundary
of the face at the other, or all the edges must be incident to the vertex at the one
pole. �

We remark that if our duality reduction allows as well the removal of orbits of
pairs of pendant dipoles, as in the proof of Theorem 2, then the dipole trees can be
reduced to dipole roses of odd size.

We now show how to reverse the δ–reduction. For what follows it is necessary
to fatten each vertex of G2 in V ∪ F ∗ to a small disk. Let f be a face of G and let
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v and w be two vertices, not necessarily distinct, on the boundary of f . Thus there
is a path p in G2 which joins the fat vertices v and w and which only intersects
G2 through the fat vertex f∗. If p can be drawn so that, for all i, δi

2(p) ∩ p is
either empty or identical with p, then we say G is δ–expandable by p, since we can
then augment G2 by adding the paths δi

2(p) as edges, and splitting the fat vertices
crossed by δi

2(p). This process, called δ–expansion, is illustrated in Figure 10, where
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Figure 10. Some examples of expansion

a) shows the addition of a loop and pendant edge, b) shows the splitting of vertices
near the pole of a rotation about a quadrilateral, and c) shows that the same vertex
may be split several times, as at one pole of a rotatory reflection.

We note that not every p can be drawn to satisfy the condition that, for all i,
δi
2(p) ∩ p is either empty or identical with p, e.g, if p passes over the equator of a

reflection.
Theorem 4 can now be reworded to say

Theorem 5. Every self–dual map G with self–duality δ2 of order 2k is obtainable
by a sequence of δ–expansions of either the map of the dipole, the 1-thorned rose,
a wheel, or a dipole tree, depending on the geometric type of the self–duality.

It is now easy to construct self–dual maps with specified duality properties. For
example, Grünbaum [5] asked if there were any self–dual polyhedra which only had
self–dualities of order 4. The question was answered by Jendrǒl [6]. We can answer
this by starting with the dipole map, with the self–dualities being the rotations
and rotatory reflections of order four on an edge. We kill the extra-symmetry by
expanding with some loops, see Figure 11. The ellipses in Figures 11 and 12 indicate
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Figure 11. All self–dualities of order 4

edges that pass through infinity. If a 3–connected map with the same property is
required, we can simply expand the loops into polygons, obtaining for instance
the self–dual pair of Figure 12, which is smaller than the polyhedron obtained by
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Figure 12. A polyhedron with all self–dualities of order 4

Jendrǒl.

3. The self–duality groups

Given a self–dual map G, we define the duality group of of G, Dual(G), to
be the group of all colored map automorphisms of G2. If G is a self–dual map,
the subgroup Aut(G) of all color preserving map automorphisms of G2, which is
equivalent to the group of map automorphisms of G, has index 2 in Dual(G), and
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the other coset comprises the set of self–dualities of G. Both Dual(G) and Aut(G)
belong to the collection of finite groups of isometries of S2, see [4]. In this view,
we have constructed all maps with a given cyclic self–duality group. The possible
combinations of Dual(G) and Aut(G) have been catalogued in [11].

Self–dual maps on surfaces of higher genus appear to belong, via covering spaces,
to the realm of self–dual tilings, which have been examined extensively in [3].
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