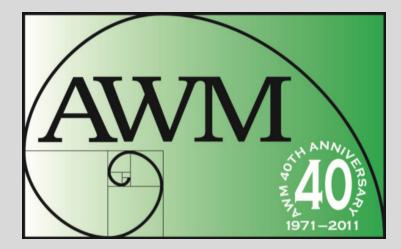


Zindler's...

Generalized Configurations

Brigitte Servatius



Whiteley's Theorem Home Page Print

Title Page

Page 1 of <mark>33</mark>

Go Back

Full Screen

Close

Quit

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Print
Title Page

Close

Zur Theorie der Netze und Configurationen von Konrad Zindler in Graz

- Elementary proof of a theorem of Möbius:

Given 4 points in the plane, one can, by ruler alone construct a point in the ϵ -neighborhood of a given 5'th point for any $\epsilon > 0$.

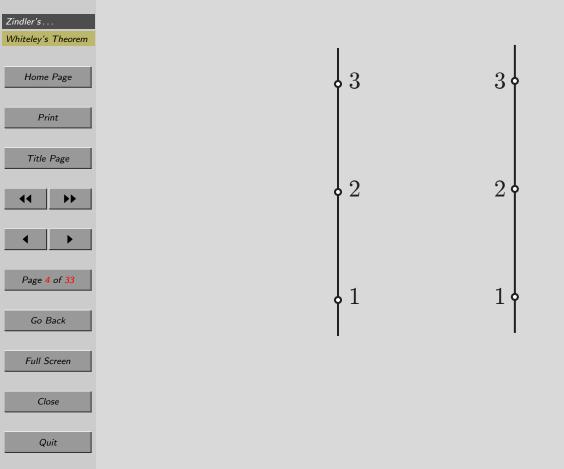
- Generalization of Configuration:

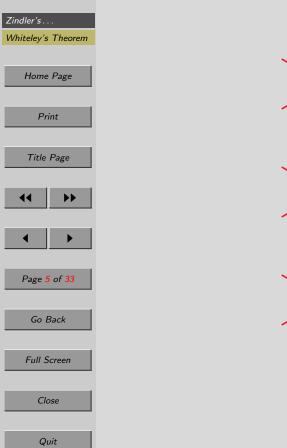
A system of points and lines in the plane such that on every line there are at least 3 points and through every point there are at least 3 lines.

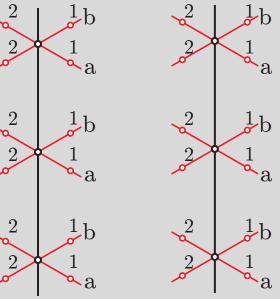
Quit

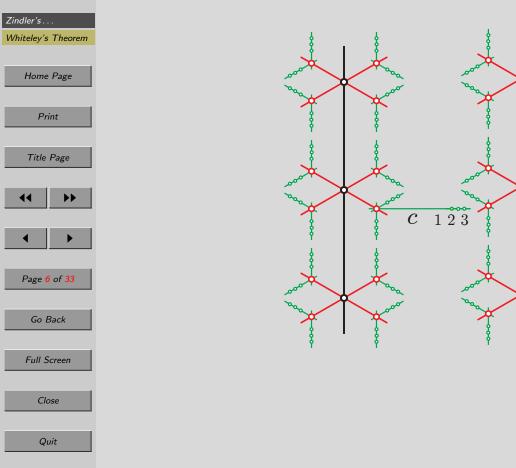
Zindler's Whiteley's Theorem			
Home Page			
Print			
Title Page			
•• ••	1.	Zindler's Construction	
•			
Page 3 of 33			
Go Back			
Full Screen			
Close			
Quit			

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit







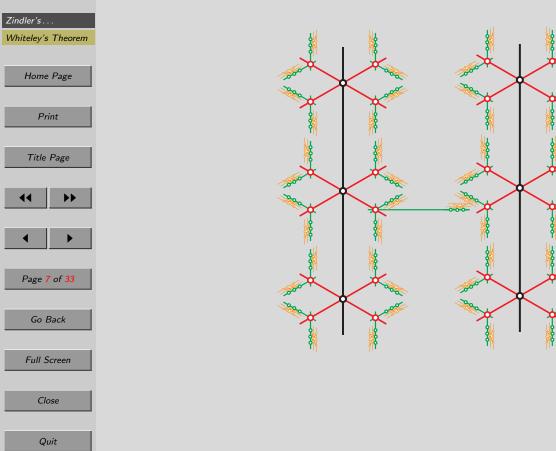


●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

С

O

С



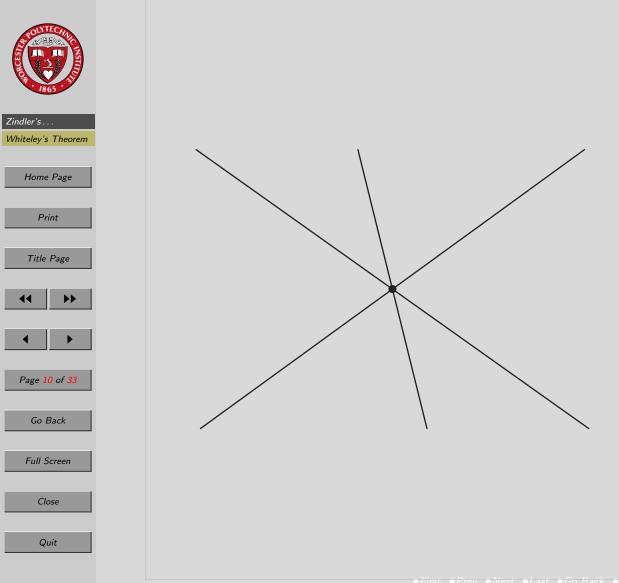
Zindler's . . . Whiteley's Theorem Home Page Print Title Page •• •• Page 8 of 33 Go Back Full Screen

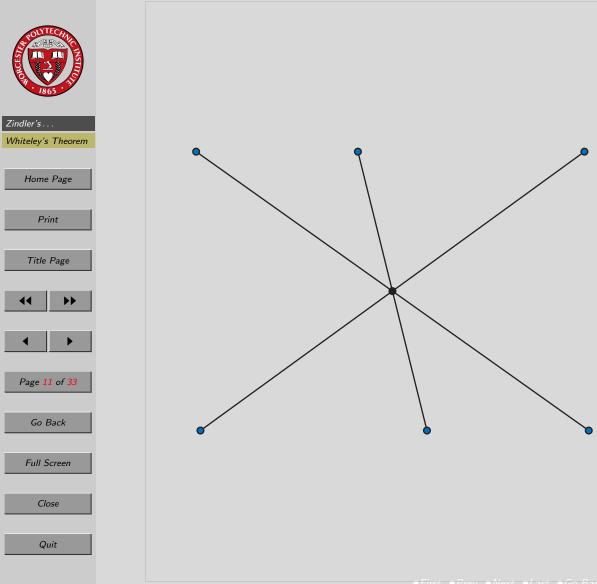
Close

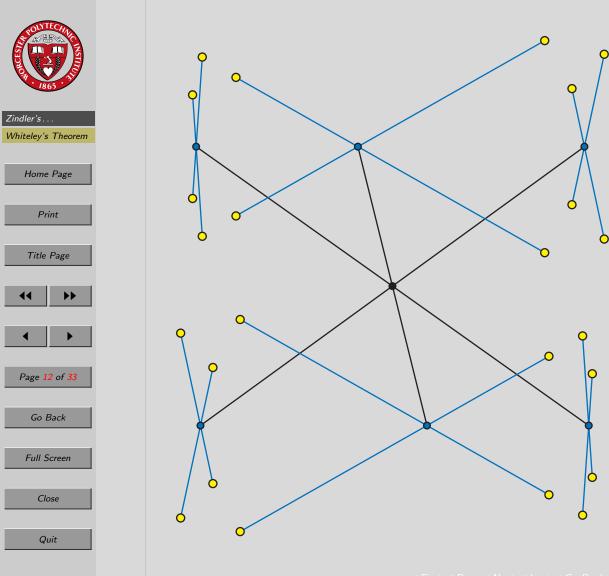
Quit

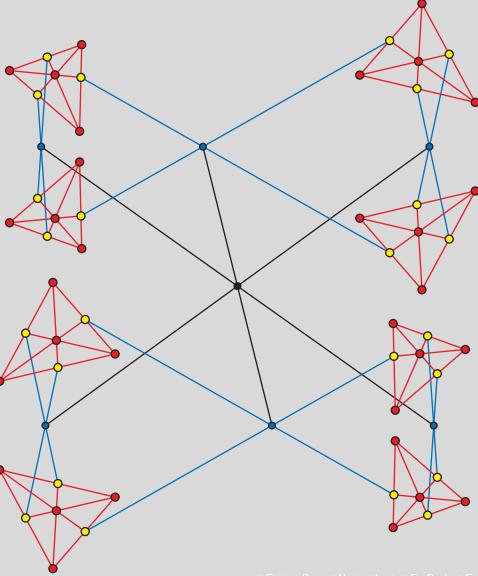
C 123

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qu









Realizable Moves
- Put a new point on a line. /
- Put a new line through a point.
- Intersect two lines.
- Draw a line through two points.
- Join two components by putting a point of one component on
a line of the other component.

Zindler's
Whiteley's Theorem

Home Page

Print

Title Page

Page 15 of 33

Go Back

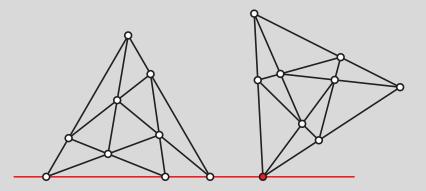
Full Screen

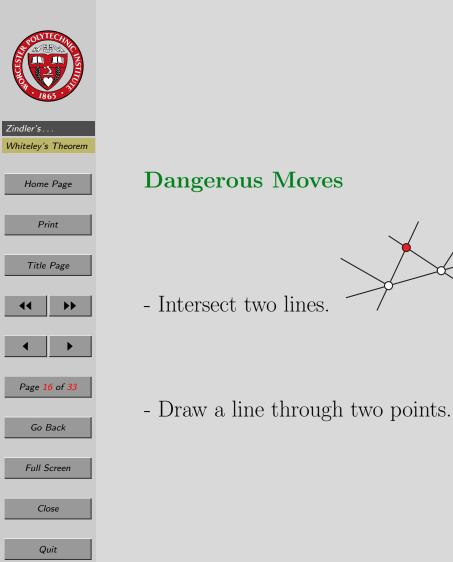
Close

••

Realizable Moves

- Put a new point on a line.
- Put a new line through a point.
- Intersect two lines.
- Draw a line through two points.
- Join two components by putting a point of one component on a line of the other component.





Zindler's... Whiteley's Theorem

Home Page

P	rint	
Title	e Pa	ge
••		••
•		►
	_	

Realizable Moves on the Levi graph

- Add vertices of degree one.
- Add vertices of degree two such that bipartiteness and girth 6 are preserved.

(between points of the same color a distance at least 4 apart.)

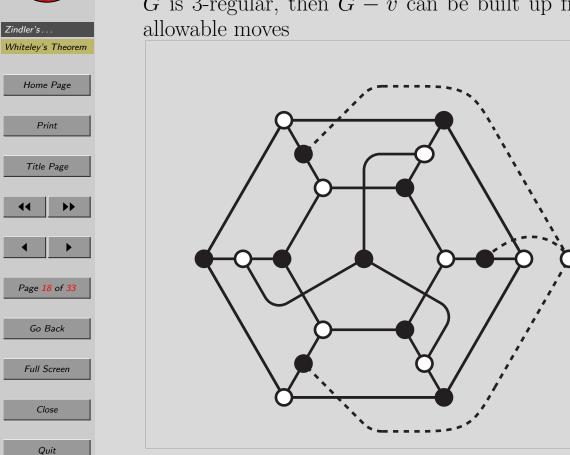
- Add edges between connected components (bridges).

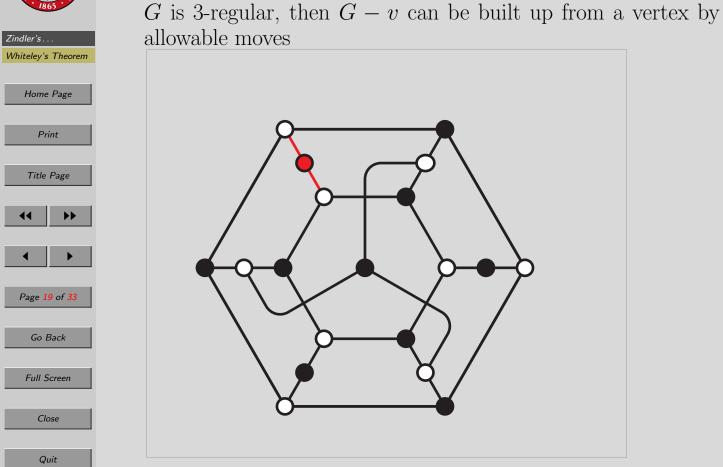
Full Screen	

Go Back

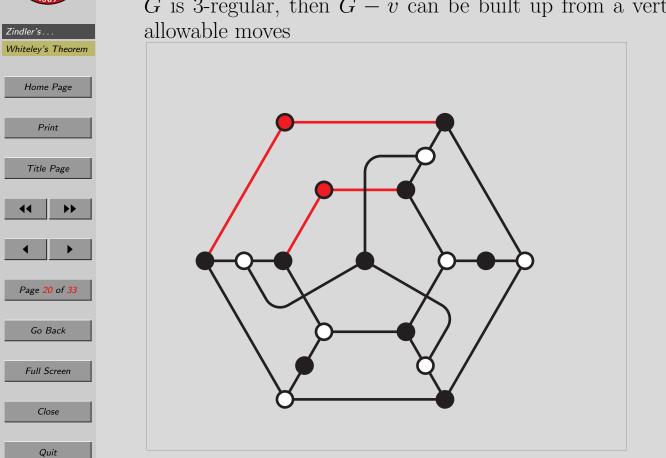
Page 17 of 33

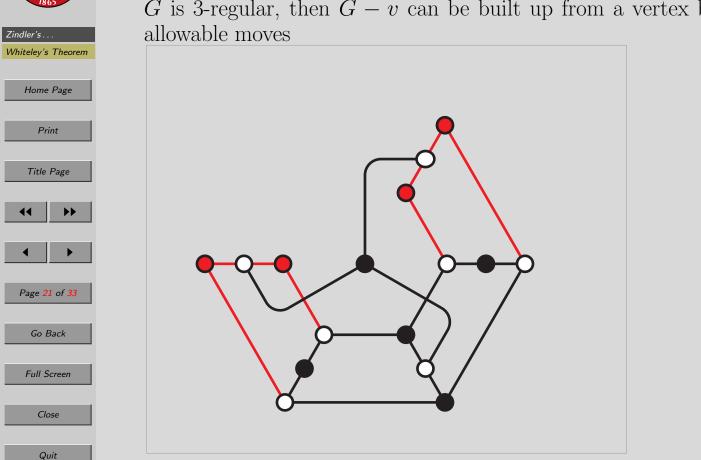
Close

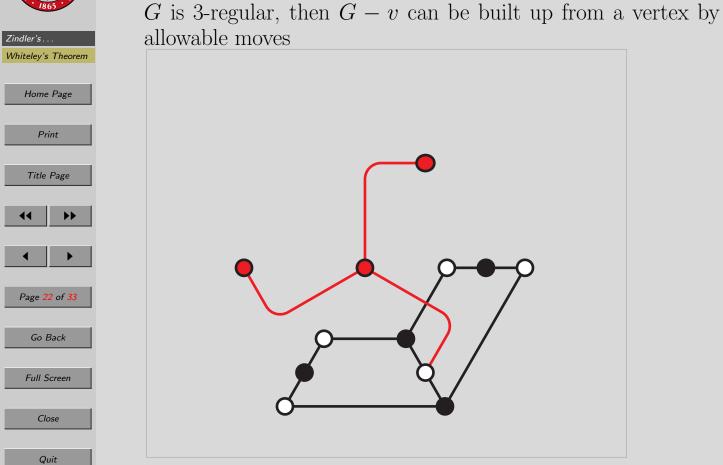




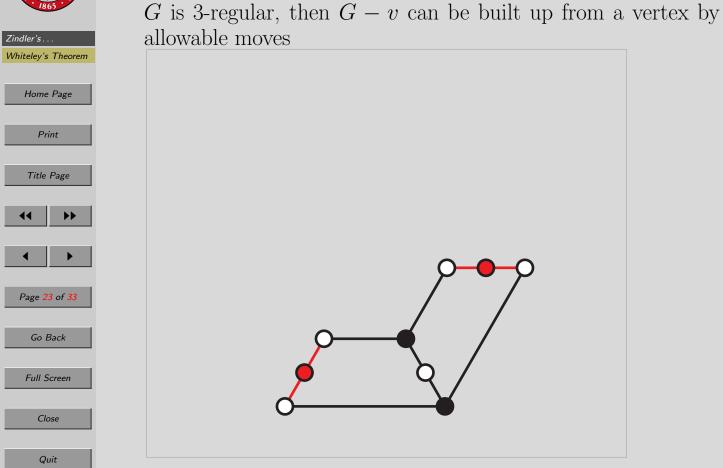
Given a bipartite graph G of girth 6, these moves may be reversed, provided there exists a vertex of degree at most 2. If



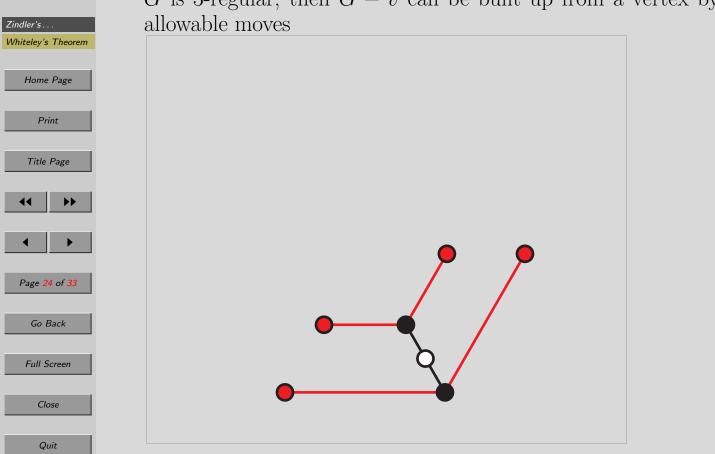




Given a bipartite graph G of girth 6, these moves may be reversed, provided there exists a vertex of degree at most 2. If



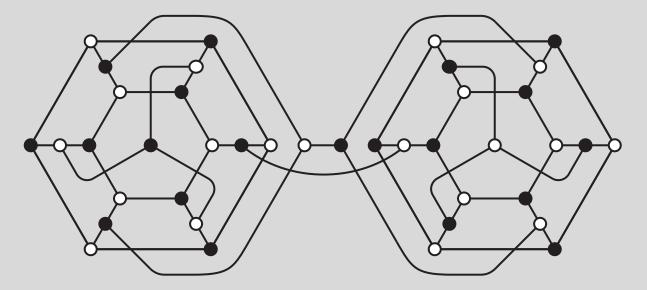
Given a bipartite graph G of girth 6, these moves may be reversed, provided there exists a vertex of degree at most 2. If





Close

Quit



●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

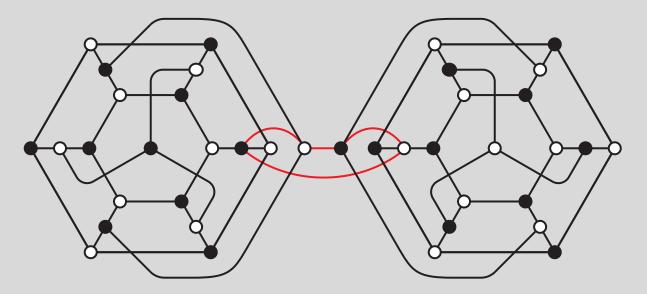
Close

Quit



Close

Quit



2. Whiteley's Theorem

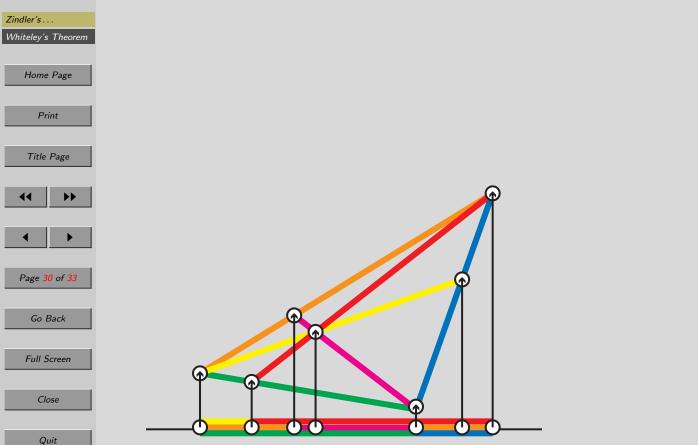
A generic picture in k - 1 space of an incidence structure lifts to a sharp scene in k-space if and only if

$$i \le a + kb - (k+1)$$

for all sub-incidence structures having at least two blocks.



For a 3-regular bipartite graph of girth six Whiteley's count is violated by three.



Quit

For a 3-regular bipartite graph of girth six Whiteley's count is violated by three.

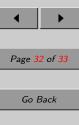
Zindler's	
Whiteley's Theorem	
Home Page	
Print	
Title Page	
44 >>	i = 0
• •	i = 1 i = 2
Page 31 of 33	i = 2
Go Back	i = 3
Full Screen	i = 9 i = 2
Close	i = 2 i = 3

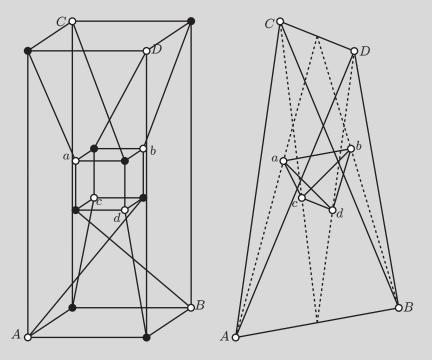
	i = 6	p = 2	l = 6	l + 2p - 2 = 8	2l + p - 2 = 12
	i = 18			l + 2p - 2 = 20	2l + p - 2 = 18
	i = 24				2l + p - 2 = 24
	i = 27	p = 9	l = 9	l + 2p - 2 = 25	2l + p - 2 = 25
	: 9	1	1 C		01 0 10
`	i = 3	p = 1	l = 0	l + 2p - 2 = 8	2l + p - 2 = 12
\mathbf{z}		p = 1 $p = 8$		l + 2p - 2 = 8 l + 2p - 2 = 20	2l + p - 2 = 12 2l + p - 2 = 18
	i = 9		l = 6		
	i = 9 $i = 21$	p = 8	l = 6 $l = 9$	l + 2p - 2 = 20	2l + p - 2 = 18
	i = 9 i = 21 i = 27	p = 8 $p = 8$	l = 6 $l = 9$ $l = 9$	l + 2p - 2 = 20 l + 2p - 2 = 23	2l + p - 2 = 18 2l + p - 2 = 24

Home Page

Zindler's... Whiteley's Theorem An (8_4) spatial configuration. a = 8, b = 8, i = 32,

$$a + 3b - 4 = 28$$





44

A similar (8_4) spatial configuration. Levi graph is a hypercube a = 8, b = 8, i = 32,Zindler's... Whiteley's Theorem a + 3b - 4 = 28Home Page Print Title Page BBc Page 33 of 33 a Q Go Back Full Screen bbClose Quit