

[Chemical Zeolites](#page-1-0)

- [Combinatorial . . .](#page-3-0)
- [Realization](#page-5-0)

[2d Zeolites](#page-7-0) [Finite Zeolites](#page-11-0)

[The Layer . . .](#page-16-0)

[Holes in Zeolites](#page-20-0)

[Motions](#page-21-0)

[Open Problems](#page-26-0)

J I

Page 1 of 28

Go Back

Full Screen

Close

Quit

Combinatorial Zeolites

Herman Servatius — Clark University (Brigitte Servatius — WPI)

- Chemical Zeolites [Combinatorial . . .](#page-3-0) [Realization](#page-5-0) [2d Zeolites](#page-7-0) [Finite Zeolites](#page-11-0) The Layer...
- [Holes in Zeolites](#page-20-0)
- **[Motions](#page-21-0)**

[Open Problems](#page-26-0)

- Title Page
- \blacksquare

 $\blacktriangleright\blacktriangleright$

Close

Quit

1. Chemical Zeolites

- crystalline solid
- \bullet units: Si + 4O

two covalent bonds per oxygen

[Open Problems](#page-26-0)

Title Page

Go Back

Full Screen

Quit

Close

- naturally occurring
- synthesized
- \bullet theoretical

Used as microfilters.

Go Back

Full Screen

Close

2. Combinatorial Zeolites

Combinatorial d-Dimensional Zeolite

- \bullet A connected complex of corner sharing d-dimensional simplices
- At each corner there are exactly two distinct simplices
- Two corner sharing simplices intersect in exactly one vertex.

body-pin graph

Vertices: simplices (silicon) Edges: bonds (oxygen) There is a one-to-one correspondence between combinatorial d-dimensional zeolites and d-regular body-pin graphs.

Home Page

 $\blacktriangleright\blacktriangleright$

Whitney

Quit

 (1932) proved that connected graphs X on at least 5 vertices are strongly reconstructible from their line graphs $L(X)$. Moreover, $Aut(X) \cong Aut(L(X))$.

Graph of a Combinatorial Zeolite

is obtained by replacing each d-dimensional simplex with K_{d+1} . The graph of the zeolite is the line graph of the Body-Pin graph.

[Open Problems](#page-26-0)

 \blacksquare

unit-distance realization

graph of the body-pin graph.

3. Realization

complex in \mathbb{R}^d .

A realization where all edges join vertices distance 1 apart in \mathbb{R}^d .

An placement (embedding) of vertices of the the d-dimensional

Equivalently a placement (embedding) of the vertices of the line

Page 6 of 28 Go Back

Full Screen

Close

Quit

non-interpenetrating realization

A realization of a d -dimensional zeolite

A realization where simplices are disjoint except at joined vertices.

Full Screen

Close

Quit

The typical situation: Not unit distance realizable.

Home Page Title Page $\blacktriangleright\blacktriangleright$ \blacksquare Page 8 of 28 Go Back

Full Screen

Close

Quit

4. 2d Zeolites

Smallest 2d zeolite is the line graph of K_4 : The graph of the octahedron with four (edge disjoint) faces. For body-pin graphs on more than 4 vertices, the zeolite can be recovered uniquely from the line-graph.

Home Page

Title Page

 \blacksquare

Page 9 of 28

Go Back

Full Screen

Close

Quit

 \blacktriangleright

It is just as easy to construct infinite symmetric examples:

Home Page

Title Page

14 | D

 \blacksquare

Page 10 of 28

Go Back

Full Screen

Close

Quit

Showing a different symmetry

Home Page Title Page

[Open Problems](#page-26-0)

Page 11 of 28

Go Back

Close

Quit

[Open Problems](#page-26-0)

Home Page Title Page $\blacktriangleright\blacktriangleright$ \blacksquare Page 12 of 28 Go Back

Full Screen

Close

Quit

5. Finite Zeolites

Body pin graph: $K_{3,3}$. Since the body pin graph is not planar, the resulting zeolite cannot be planar. Its underlying graph is generically globally rigid. However, it has a unit distance realization in the plane which is a mechanism.

Home Page

Title Page

14 | D

Page 13 of 28

Go Back

Full Screen

Close

Quit

J I

Harborth's Example

[Chemical Zeolites](#page-1-0)

[Combinatorial . . .](#page-3-0)

[Realization](#page-5-0)

[2d Zeolites](#page-7-0) [Finite Zeolites](#page-11-0)

[The Layer . . .](#page-16-0)

[Holes in Zeolites](#page-20-0)

[Motions](#page-21-0)

[Open Problems](#page-26-0)

Home Page

Title Page

 \blacktriangleright

Page 14 of 28

Go Back

Full Screen

Close

Quit

[Chemical Zeolites](#page-1-0) [Combinatorial . . .](#page-3-0) [Realization](#page-5-0) [2d Zeolites](#page-7-0) [Finite Zeolites](#page-11-0) The Layer...

[Holes in Zeolites](#page-20-0)

[Motions](#page-21-0)

[Open Problems](#page-26-0)

Home Page

Title Page

 \blacktriangleright

Page 15 of 28

Go Back

Close

Quit

- [Chemical Zeolites](#page-1-0) [Combinatorial . . .](#page-3-0) [Realization](#page-5-0)
- [2d Zeolites](#page-7-0)
- [Finite Zeolites](#page-11-0)
- The Layer . . .
- [Holes in Zeolites](#page-20-0)
- **[Motions](#page-21-0)**
- [Open Problems](#page-26-0)
	- Home Page

Page 17 of 28

Go Back

Close

6. The Layer Construction

 $Z = (T, C)$ is a combinatorial zeolite realizable in dimension d. $\mathbb{R}^d \subseteq \mathbb{R}^{d+1}$

Label each $t \in T$ arbitrarily with ± 1 .

For $+1$, erect a $d + 1$ dimensional simplex in the upper half space,

For -1 , erect a $d + 1$ dimensional simplex in the upper half space,

Call the Complex Z_a and its mirror image Z_b .

Alternately staking Z_a and Z_b gives a *layered Zeolite* in \mathbb{R}^{d+1} .

- [Chemical Zeolites](#page-1-0) [Combinatorial . . .](#page-3-0) [Realization](#page-5-0) [2d Zeolites](#page-7-0) [Finite Zeolites](#page-11-0) [The Layer . . .](#page-16-0) [Holes in Zeolites](#page-20-0)
- **[Motions](#page-21-0)**
- [Open Problems](#page-26-0)

Title Page

 \blacktriangleright

Page 18 of 28

Go Back

Full Screen

Close

Quit

Labels all $+1$ A two layered zeolite.

Close

Quit

The general case starting from a finite zeolite.

Theorem: There are uncountably many isomorphism classes of unit distance realizable zeolites in \mathbb{R}^3 . (actually in any dimension $d > 1$.)

Close

Quit

Proof:

Home Page

Title Page

Page 21 of 28

Go Back

Full Screen

Close

Quit

7. Holes in Zeolites

Close

Quit

Degree of Freedom

Each simplex d-dimensional simplex has $d(d+1)/2$ degrees of freedom

Each contact of the $d+1$ contacts removes d degrees.

By a naïve count, a zeolite is rigid - (overbraced by $d(d+1)/2$.)

Generically globally rigid in the plane.

Close

Quit

[Open Problems](#page-26-0)

Home Page

Page 24 of 28

Go Back

Full Screen

Close

Quit

Generically globally rigid in the plane.

A 4-regular vertex transitive graph is globally rigid unless it has a 3-factor consisting of s disjoint copies of K_4 with $s \geq 3$. [Jackson, S, S – 2004]

Close

Close

Close

Quit

9. Open Problems

- 1. Does there exist a finite 2D zeolite with a planar unit distance realization and having no non-simplex triangle?
- 2. Find $f(n)$ so that, given a Unit Distance realization of a n-dimensional zeolite, its line graph has a unit distance realization in dimension $f(n)$

[If $f(n) = 2n - 1$, then the line graph corresponds to an $2n-1$ dimensional zeolite.

- 3. In particular, find $f(2)$.
- 4. Are there finite generically flexible 2D Zeolites?
- 5. Are there finite generically non-globally rigid 2D Zeolites?
- 6. Do there exist finite non-interpenetrating zeolites with unit distance plane realization which is non-rigid.

Page 28 of 28

Go Back

Full Screen

Close

Quit

Harborth's Construction