

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites
The Layer...

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 1 of 28

Go Back

Full Screen

Close

Quit

Combinatorial Zeolites

Herman Servatius — Clark University (Brigitte Servatius — WPI)

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites
The Layer...

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 2 of 28

Go Back

Full Screen

Close

Quit

1. Chemical Zeolites

- crystalline solid
- units: Si + 4O

• two covalent bonds per oxygen

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites
The Layer...

Holes in Zeolites

...... ... _____

Open Problems

Motions

Home Page

Title Page

Page 3 of 28

Go Back

Full Screen

Close

Quit

- naturally occurring
- synthesized
- theoretical

Used as microfilters.

Combinatorial . .

Realization

2d Zeolites

Finite Zeolites

The Layer . . .

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 4 of 28

Go Back

Full Screen

Close

Quit

2. Combinatorial Zeolites

Combinatorial d-Dimensional Zeolite

- \bullet A connected complex of corner sharing d-dimensional simplices
- At each corner there are exactly two distinct simplices
- Two corner sharing simplices intersect in exactly one vertex.

body-pin graph

Vertices: simplices (silicon)

Edges: bonds (oxygen)

There is a one-to-one correspondence between combinatorial d-dimensional zeolites and d-regular body-pin graphs.

Combinatorial . .

Realization

2d Zeolites

Finite Zeolites

The Layer...

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Go Back

Full Screen

Close

Quit

Graph of a Combinatorial Zeolite

is obtained by replacing each d-dimensional simplex with K_{d+1} .

The graph of the zeolite is the line graph of the Body-Pin graph.

Whitney

(1932) proved that connected graphs X on at least 5 vertices are strongly reconstructible from their line graphs L(X). Moreover, $Aut(X) \cong Aut(L(X))$.

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer . . .

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 6 of 28

Go Back

Full Screen

Close

Quit

3. Realization

A realization of a d-dimensional zeolite

An placement (embedding) of vertices of the d-dimensional complex in \mathbb{R}^d .

Equivalently a placement (embedding) of the vertices of the line graph of the body-pin graph.

unit-distance realization

A realization where all edges join vertices distance 1 apart in \mathbb{R}^d .

non-interpenetrating realization

A realization where simplices are disjoint except at joined vertices.

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer...

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 7 of 28

Go Back

Full Screen

Close

Quit

The typical situation: Not unit distance realizable.

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer . . .

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 8 of 28

Go Back

Full Screen

Close

Quit

4. 2d Zeolites

Smallest 2d zeolite is the line graph of K_4 : The graph of the octahedron with four (edge disjoint) faces.

For body-pin graphs on more than 4 vertices, the zeolite can be recovered uniquely from the line-graph.

It is just as easy to construct infinite symmetric examples:

Chemical Zeolites Combinatorial . . . Realization 2d Zeolites Finite Zeolites The Layer . . . Holes in Zeolites Motions Open Problems Home Page Title Page Page 9 of 28 Go Back Full Screen Close

Showing a different symmetry

Chemical Zeolites

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer . . .

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

44 | >>

Page 10 of 28

Go Back

Full Screen

Close

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer...

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

44 | 1

Page 11 of 28

Go Back

Full Screen

Close

Combinatorial . .

Realization

2d Zeolites

Finite Zeolites

The Layer . . .

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 12 of 28

Go Back

Full Screen

Close

Quit

5. Finite Zeolites

Body pin graph: $K_{3,3}$. Since the body pin graph is not planar, the resulting zeolite cannot be planar. Its underlying graph is generically globally rigid. However, it has a unit distance realization in the plane which is a mechanism.

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer . . .

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 13 of 28

Go Back

Full Screen

Close

Quit

Harborth's Example

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer . . .

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 14 of 28

Go Back

Full Screen

Close

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer . . .

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 15 of 28

Go Back

Full Screen

Close

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer . . .

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 16 of 28

Go Back

Full Screen

Close

Combinatorial . .

Realization

2d Zeolites

Finite Zeolites
The Layer...

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 17 of 28

Go Back

Full Screen

Close

Quit

6. The Layer Construction

Z=(T,C) is a combinatorial zeolite realizable in dimension d. $\mathbb{R}^d\subset\mathbb{R}^{d+1}$

Label each $t \in T$ arbitrarily with ± 1 .

For +1, erect a d + 1 dimensional simplex in the upper half space,

For -1, erect a d + 1 dimensional simplex in the upper half space,

Call the Complex Z_a and its mirror image Z_b .

Alternately staking Z_a and Z_b gives a layered Zeolite in \mathbb{R}^{d+1} .

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer . . .

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 18 of 28

Go Back

Full Screen

Close

Quit

Labels all +1 A two layered zeolite.

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer...

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Go Back

Full Screen

Close

Quit

The general case starting from a finite zeolite.

Theorem: There are uncountably many isomorphism classes of unit distance realizable zeolites in \mathbb{R}^3 . (actually in any dimension d > 1.)

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer...

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Go Back

Full Screen

Close

Quit

Proof:

7. Holes in Zeolites

Chemical Zeolites

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer . . .

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 21 of 28

Go Back

Full Screen

Close

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer . . .

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 22 of 28

Go Back

Full Screen

Close

Quit

8. Motions

Degree of Freedom

Each simplex d-dimensional simplex has d(d+1)/2 degrees of freedom

Each contact of the d+1 contacts removes d degrees.

By a naïve count, a zeolite is rigid - (overbraced by d(d+1)/2.)

Generically globally rigid in the plane.

Chemical Zeolites

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites The Layer . . .

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 23 of 28

Go Back

Full Screen

Close

Generically globally rigid in the plane.

Chemical Zeolites

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer . . .

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 24 of 28

Go Back

Full Screen

Close

Quit

A 4-regular vertex transitive graph is globally rigid unless it has a 3-factor consisting of s disjoint copies of K_4 with $s \ge 3$. [Jackson, S, S – 2004]

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer . . .

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 25 of 28

Go Back

Full Screen

Close

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer . . .

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Page 26 of 28

Go Back

Full Screen

Close

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer . . .

Holes in Zeolites

Motions
Open Problems

Home Page

Title Page

Page 27 of 28

Go Back

Full Screen

Close

Quit

9. Open Problems

- 1. Does there exist a finite 2D zeolite with a planar unit distance realization and having no non-simplex triangle?
- 2. Find f(n) so that, given a Unit Distance realization of a n-dimensional zeolite, its line graph has a unit distance realization in dimension f(n)

[If f(n) = 2n - 1, then the line graph corresponds to an 2n - 1 dimensional zeolite.]

- 3. In particular, find f(2).
- 4. Are there finite generically flexible 2D Zeolites?
- 5. Are there finite generically non-globally rigid 2D Zeolites?
- 6. Do there exist finite non-interpenetrating zeolites with unit distance plane realization which is non-rigid.

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer . . .

Holes in Zeolites

Motions

Open Problems

Home Page

Title Page

Go Back

Full Screen

Close

Harborth's Construction