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Geometric and Petrie (Self) Duality

Brigitte Servatius
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1. Polygonal maps

Start with a set of polygons.
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Consider them oriented

Assume: total # of edges is even.

∃ a perfect matching of edges: m
For each matched edge pair specify

+ matched respecting edge orientation
− matched reversing edge orientation

(m,±) is a map provided the resulting complex is connected.
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Example

w

x

yz

(z, y;−)
(x,w; +)

Idea
Barycentric Subdivision

This information is conveniently collected in the flag graph

w

x

yz

Flag graph: Edges 3 colored.
01 cycles: faces
12 cycles: vertices
02 cycles: edges
of the resulting complex

M(τ0, τ1, τ2)
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In [2] we find:
“The spirit of the present paper is probably best described
by the desire to rid the theory of regular polyhedra of the
psychologically motivated crutch of ‘membranes’ spanning
the polygons used as building blocks.”
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2. Forms of Duality

Map M = (τ0, τ1, τ2)

Dual Du(M) = (τ2, τ1, τ0))

Antipodal Dual A(M) = (τ0, τ1, τ0τ2))

Petrie Dual Pe(M) = (τ0τ2, τ1, τ0))



Polygonal maps

Forms of Duality

Self-Duality

Maps are not enough

The Block-Cutpoint Tree

The 3-Block Tree

The Program

Petrie Dual

Orientability

3D Realizability

Ribbon Embeddings

Regular Objects

Combinatorics

How many . . .

Regular maps

Bibliography

Home Page

Title Page

JJ II

J I

Page 7 of 68

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Du Pe Du Pe Du Pe
τ0 ←→ τ2 ←→ τ0τ2 ←→ τ0 ←→ τ2 ←→ τ0τ2 ←→ τ0
τ1 ←→ τ1 ←→ τ1 ←→ τ1 ←→ τ1 ←→ τ1 ←→ τ1
τ2 ←→ τ0 ←→ τ0 ←→ τ0τ2 ←→ τ0τ2 ←→ τ2 ←→ τ2
V ←→ F ←→ F ←→ Vτ0 ←→ Fτ2 ←→ V ←→ V
E ←→ E ←→ Eτ0 ←→ Eτ0 ←→ Eτ2 ←→ Eτ2 ←→ E
F ←→ V ←→ Vτ0 ←→ F ←→ V ←→ Fτ2 ←→ F
G ←→ G∗ ←→ G∗ ←→ Gp ←→ Gp ←→ G ←→ G
G∗ ←→ G ←→ Gp ←→ G∗ ←→ G ←→ Gp ←→ Gp

M

Du(M)Pe(M)

DuPe(M) PeDu(M)

DuPeDu(M)=PeDuPe(M)
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Example

M τ0 = (xw)(yz) τ1 = (xz)(yw) τ2 = (xz)(yw)

x

y z

w

PeM τ0 = (xy)(zw) τ1 = (xz)(yw) τ2 = (xz)(yw)

x

w z

y

DuPeM τ0 = (xz)(yw) τ1 = (xz)(yw) τ2 = (xy)(zw)

y
z
w

x

PeDuPeM τ0 = (xw)(yz) τ1 = (xz)(yw) τ2 = (xy)(zw)

x

y z

w

PeDuM τ0 = (xy)(zw) τ1 = (xz)(yw) τ2 = (xw)(yz)

x

w z

y

DuM τ0 = (xz)(yw) τ1 = (xz)(yw) τ2 = (xw)(yz)

w
z
y

x
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M

Du(M)Pe(M)

DuPe(M) PeDu(M)

DuPeDu(M)=PeDuPe(M)

'
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M

Du(M)Pe(M)

DuPe(M) PeDu(M)

DuPeDu(M)=PeDuPe(M)

'

'
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M

Du(M)Pe(M)

DuPe(M) PeDu(M)

DuPeDu(M)=PeDuPe(M)

'

'

'
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3. Self-Duality
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[4], [5]
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[3]
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[7]
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[3]
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4. Maps are not enough

[6]

A self-dual graph with no corresponding self-dual map.
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5. The Block-Cutpoint Tree

For any graph G, the cycle matroid of G is the direct sum
over the cycle matroids of the blocks of G:

M(G) =
∑

M(Gi)
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6. The 3-Block Tree

For a 2-connected graph G, the cycle matroid of G is the
2-sum over the cycle matroids of the 3-blocks of G:

M(G) = M(G0)
⊕
e1

M(G1) . . .
⊕
ek

M(Gk)



Polygonal maps

Forms of Duality

Self-Duality

Maps are not enough

The Block-Cutpoint Tree

The 3-Block Tree

The Program

Petrie Dual

Orientability

3D Realizability

Ribbon Embeddings

Regular Objects

Combinatorics

How many . . .

Regular maps

Bibliography

Home Page

Title Page

JJ II

J I

Page 25 of 68

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

7. The Program

Program: Given a planar graph with whose automorphism
group has finitely many vertex orbits.

1. If 3-connected – embed and straighten so that the au-
tomorphisms are represented by isometries (euclidean,
spherical, or hyperbolic).

Apply geometric methods.

2. Else if two-connected – form the 3–block tree and use
the program on each block, and merge with data on the
automorphisms of the tree.

3. Else if connected – from the block-cutpoint tree and ap-
ply the program to each block, merging with the tree
automorphisms.

4. Else apply program to each connected component, and
merge with permutations of isomorphic components.
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8. Petrie Dual

The Petrie dual of a cube and its geometric dual.
The opposite sides of the hexagon are identified.
Both maps are on the torus.

(-1,-1,-1) (1,-1,-1)

(1,1,-1)

(1,1,-1)

(-1,-1,1)

(1,-1,1)

(1,1,1)(-1,1,1)

(-1,1,-1)(1,1,-1)

(-1,-1,1)

(-1,-1,1)

(-1,-1,-1)

(-1,-1,-1)

(1,-1,1)

(1,-1,1)

(-1,1,1)

(-1,1,1)

(1,1,-1)
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(-1,-1,-1) (1,-1,1)

(1,1,-1) (-1,1,1)

The Petrie dual of an octahedron and its dual.
Both maps are on the four crosscap surface.
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9. Orientability

〈τ1τ2, τ2τ0, τ0τ1〉 = 〈V , E ,F〉 has
either one flag orbit −→ non-orientable map
or two flag orbits −→ orientable map
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Examples of Petrie duals - Tetrahedron

a)

a

b

c

d

b)

a

b

c

d

a) The tetrahedron with superimposed flag graph, with the
flag matchings τ0 in blue, τ1 in yellow and τ2 in red. b) The
flag graph for the Petrie Dual.

The three Petrie quadrilaterals,

a

b

c

d

a

b

c

d

a

b

c

d
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Examples of Petrie duals - Tetrahedron

a)

a

b

c

d

b)

a

b

c

d

a) The tetrahedron with superimposed flag graph, with the
flag matchings τ0 in blue, τ1 in yellow and τ2 in red. b) The
flag graph for the Petrie Dual.

A hexagon with opposite sides identified with a twist – non-
orientable. (projective plane)

ac c

b

b

d

d
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Examples of Petrie duals - Cube

The cube has four hexagonal Petrie cycles

hg

ef

c d

ab

Four Petrie hexagons

(0,0,0) (1,0,0)

(1,1,0)

(1,1,0)

(0,0,1)

(1,0,1)

(1,1,1)(0,1,1)

(0,1,0)(1,1,0)

(0,0,1)

(0,0,1)
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Examples of Petrie duals - Cube

The cube has four hexagonal Petrie cycles

hg

ef

c d

ab

Four Petrie hexagons arranged as the upper and lower half
of a torus. which combine in pairs to form two annuli, which
in turn join to form a torus – orientable.

hg

ef

c d

ab

hg

ef

c d

ab
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Tetrahedron – Petrie dual not orientable

Cube – Petrie dual orientable

Theorem

Let M(τ0, τ1, τ2) be an orientable map.
Pe(M) is orientable if and only if G(V , E) is bipartite.

Theorem

Let M(τ0, τ1, τ2) be an non-orientable map.
Pe(M) is non-orientable if G(V , E) is bipartite.

The graph of a self-Petrie orientable map must be bipartite.

The graph of a self-Petrie non-orientable map need not be
bipartite.
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Recall Whitney’s Theorem

[8] A 3-connected planar graph has an essentially unique
embedding on the sphere.

9.1. Consequence

A self-Petrie graph on the sphere can be at most 2-connected.
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Question

Can there be a map M on the sphere which is both is
self-dual and self-Petrie ?
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Theorem

Every three connected planar graph has a subdivision
which is self-Petrie.
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10. 3D Realizability

M and Du(M) can be drawn on the same surface in a nice
way.
There is a 3D representation in the orientable case.

M and Pe(M) describe the same graph on two different sur-
faces.
In the orientable case, can we find two surfaces in 3D such
that their intersection is their common graph?
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Example: Cube graph

hg

ef

c d

ab

M
Sphere

hg

ef

c d

ab

hg

ef

c d

ab

Pe(M)
Torus

Fact: In any 3D representation of Pe(M) at least one pair
of quadrilaterals is linked.
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A flat torus in the plane with 4 hexagons.A
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A framing of the torus in 3D
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Other Framings
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Other FramingsA
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11. Ribbon Embeddings

Example: Cube graph

Question: Is there at least a ribbon complex? The cube
graph with ribbons sewn on for each four cycle and each
Petrie six cycle?

U

L

D 

R BF 

12

3

4

1 2

3

4

F3

U4

L2

F1

F4

F2

D1 D2

D3 D4

R4

R1

R2

R3
U3

U2 U1

L1

L3

L4

B1 B2

B3B4

Answer: No (by studying the labeled graph [1] associated to
the ribbon complex.)
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For self-Petrie-dual maps it is possible to have ribbon com-
plexes in R3

in fact
These examples are realizable as intersections of 2 spheres or
two tori respectively

1
2

7 3

4

8

6

5

1
2

7 3

4

8

6

5

a)

a
b

a
b

b)

a
b

a
b

Non-orientable case: Example – Klein Bottle

Ribbon Complex? Yes!
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And the moral is:
If we have a 3D representation of a graph drawing on a sur-
face, and then forget about the membranes in the Grünbaum
spirit, we can still, from the existence of linked cycles exclude
some surfaces by looking just at the skeleton.
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12. Regular Objects

–To a geometer - Platonic Solids
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–To a topologist - Platonic Maps
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–To a graph theorist - Platonic Graphs
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13. Combinatorics

M is a regular map on the sphere:
vertices: m-valent
faces: n-valent.

2|E| = m|V | = n|F |

Euler characteristic: χ(M) = 2
Thus

2|E|
m
− |E| + 2|E|

n
= 2.

Integer solutions: (m,n > 1)

1/n + 1/m > 1/2,

m = 2, n ≥ 2, (an n-cycle separating the sphere into two
n-gonal faces)
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m = 3, m = 3 (tetrahedron)

m = 3, n = 4 (octahedron),

m = 3 and n = 5 (icosahedron),

m = 4 and n = 3 (cube),

m = 5 and n = 3 (dodecahedron),
m ≥ 6 and n = 2 (two vertices connected by n edges forming
n 2-gons).
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14. How many automorphisms?
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15. Regular maps

map type

If M is a regular map, then its underlying graph or multi-
graph is vertex-transitive, edge-transitive and face-transitive.
In particular, every face of must have the same number of
edges (say k) and every vertex must have the same valency
(say m), and every Petrie-cycle must have the same length
(say p). In this case we say that M has type {k,m}p.
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For a regular map M of type {k,m}, the involutions τ0, τ1

and τ2 generate the automorphism group Aut(M) and satisfy
the full (2, k,m) triangle group relations

τ 2
0 = τ 2

1 = τ 2 = (τ0τ2)
2 = (τ1τ2)

k = (τ0τ1)
m = 1.
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(Standard) Wilson operators

Du and Pe are operators of order 2 on the family of all regu-
lar maps. Conder calls the composite operators DuPe and
PeDu triality operators. They are of order 3.
If M has type {k,m}q then
- Du(M) has type {m, k}q
- Pe(M) has type {q,m}k
- DuPe(M) has type {q, k}m
- PeDu(M) has type {m, q}k
- DuPeDu(M) has type {k, q}m
so the operators Du and Pe generate a group of order 6 and
give all permutations of the three parameters k, m and q.
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Wilson ‘hole’ operators

M d-valent, gcd(e, d) = 1
Me: replacing V with Ve.

Icosahedron I and I2.

Coxeter (1937), Wilson (1979), Nedela and Škoviera (1997)
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Octahedron O and O2

gcd(4, 2) = 2, O2 is not a surface.
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If M is regular, then so is Me, with the same underly-
ing graph, and the same automorphism group. Taking
M → Me takes the vertex-stabilizing automorphism τ2τ1

to (τ2τ1)
e, and the canonical generating triple (τ2, τ0, τ1) to

(τ2, τ0, τ2(τ2τ1)
e).
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Kaleidoscopic Self-dual and Self-Petrie maps

If the map M is self-dual and self-Petrie, then M is invariant
under all six of the ‘standard’ Wilson operators (in the group
generated by D and P ), and we say M has trinity symmetry.
If the map M is isomorphic to all of its power maps Me (for
e coprime to the valence), then M is invariant under all of
the Wilson ‘hole’ operators, and we say M is kaleidoscopic.
Wilson [9] conjectured the existence of d-valent kaleidoscopic
regular maps which are self-dual and self-Petrie for all even
d.
Maps that are regular, kaleidoscopic and have trinity sym-
metry are in a sense the most highly symmetric of all.

Questions:

Do such maps exist? and for what valences? How large is
the group generated by all the map operators?



Polygonal maps

Forms of Duality

Self-Duality

Maps are not enough

The Block-Cutpoint Tree

The 3-Block Tree

The Program

Petrie Dual

Orientability

3D Realizability

Ribbon Embeddings

Regular Objects

Combinatorics

How many . . .

Regular maps

Bibliography

Home Page

Title Page

JJ II

J I

Page 63 of 68

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Examples

- A 2-cycle embedded on the sphere, with type {2, 2}2

- A regular map of type {4, 4}4 on the torus
- A regular map of type {6, 6}6 on a surface of genus 10

Theorem

[Archdeacon, Conder & Siráň (2010)] For every positive in-
teger n, there exists a kaleidoscopic regular map of type
{2n, 2n}2n with trinity symmetry on an orientable surface
of genus n3 − 2n2 + 1.
The existence of this family was conjectured by Steve Wilson
as a PhD student in 1976, without the extra kaleidoscopic
assumption. The theorem can be proved with the help of
some combinatorial group theory.
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Sketch proof(Conder).

In the abstract group G with presentation

〈τ0, τ1, τ2 | τ 2
2 = τ 2

0 = τ 2
1 = (τ2τ0)

2 = [(τ2τ1)
2, (τ0τ1)

2] = 1〉,

the elements u = (τ2τ1)
2, v = (τ0τ1)

2 and w = (τ2τ0τ1)
2 gen-

erate a normal subgroup L of index 8. Also Reidemeister-
Schreier theory shows that L is free abelian (of rank 3).
Hence for every n, the subgroup Ln generated by n’th pow-
ers of elements of L is normal in G, with quotient G/Ln

being the automorphism group of a regular map Mn of type
{2n, 2n}2n.
Moreover, the normal subgroup Ln is preserved by each of
the operators D : (τ2, τ0, τ1)→ (τ0, τ2, τ1), P : (τ2, τ0, τ1)→
(τ2, τ2τ0, τ1) and He : (τ2, τ0, τ1) → (τ2, τ0, τ2(τ2τ1)

e) for e
coprime to n, and so the map Mn is kaleidoscopic with trinity
symmetry. QED
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New examples from old

[Archdeacon, Conder & Siráň (2010)] also have a construc-
tion that takes an orientable regular kaleidoscopic map of
degree d with trinity symmetry, and produces from it a reg-
ular kaleidoscopic map of degree dn with trinity symmetry,
for every positive integer n.

Question (Conder):

Is there an example of odd valence?

Answer (Conder):

Yes! There’s an example of type {15, 15}15 on a non-
orientable surface (of large genus), with automorphism group
A5 × A5× A5 [Conder, 2010]

15.1. Open question (Conder):

Are there any with odd prime valence?
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How large can the operator group be?

For any regular map with trinity symmetry, the standard
Wilson operators Du and Pe generate a group of order 6.
For any kaleidoscopic regular map of valence k, the Wilson
hole operators He generate a group of order φ(k), where φ
is Euler’s φ-function.

15.2. Theorem

[Conder, Kwon, Siráň 2011] Let ω(n) be the number of prime
divisors of n. Then for the kaleidoscopic regular map Mn of
type {2n, 2n}2n with trinity symmetry, the set of all the
Wilson operators generates a group of order 6(φ(2k))3/2i

where i = ω(n) if n 6≡ 0 mod 4, i = ω(n)+1 if n ≡ 4 mod 8,
or i = ω(n) + 2 if n ≡ 0 mod 8.
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Question (Conder):

Is the order of the operator group bounded by the valence?

No!

15.3. Theorem

[Conder, Kwon, Siráň 2011] For all n > 0,
∃M of type {8; 8}8.

M kaleidoscopic, regular, self-dual, and self-Petrie dual.

automorphism group of order 128n16

operator group of order divisible by 48n.

(Even for fixed valence, the operator group can be arbitrarily
large.)
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