

| The Molecular      |  |
|--------------------|--|
| Katoh-Tanigawa     |  |
| The rigidity       |  |
| Back to 2-d        |  |
| Realization in the |  |
| The k-plane        |  |
| 2-plane matroid    |  |
| Whiteley's Theorem |  |
|                    |  |



Home Page



Go Back

Full Screen

Close

Quit

#### $k\mbox{-}\mbox{Plane}$ Matroids and Whiteley's Flattening Conjectures

(cubocatahedron movie)

(pedestal movie)

Worcester Polytechnic Institute

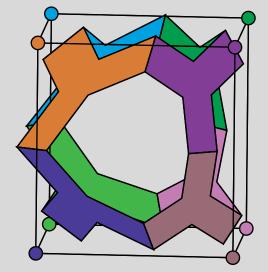
●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit



The Molecular... Katoh-Tanigawa... The rigidity... Back to 2-d Realization in the.. The k-plane...

2-plane matroid...

Whiteley's Theorem






Full Screen

Close

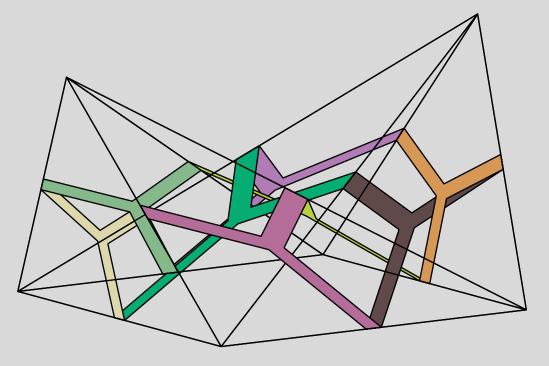
Quit





The Molecular... Katoh-Tanigawa... The rigidity... Back to 2-d Realization in the... The k-plane... 2-plane matroid...

Whiteley's Theorem


Home Page
Title Page

Page <mark>3</mark> of 44 Go Back

Full Screen

Close

Quit





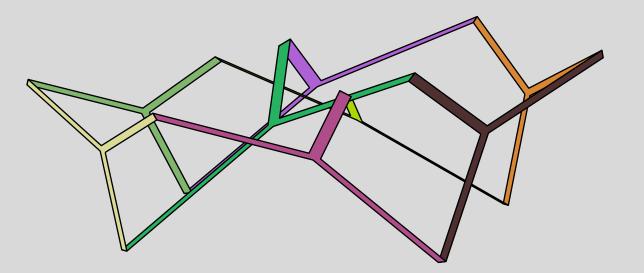
The Molecular... Katoh-Tanigawa... The rigidity... Back to 2-d Realization in the... The k-plane... 2-plane matroid...

Whiteley's Theorem

Home Page






Page 4 of 44

Go Back

Full Screen

Close

Quit



●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui



| The Molecular             |  |
|---------------------------|--|
| Katoh-Tanigawa            |  |
| The rigidity              |  |
| Back to 2-d               |  |
| Realization in the        |  |
| The k-plane               |  |
| 2-plane matroid           |  |
| Whiteley's Theorem        |  |
|                           |  |
| Home Page                 |  |
|                           |  |
| Title Page                |  |
|                           |  |
| •• ••                     |  |
|                           |  |
| ▲ ▶                       |  |
|                           |  |
| Page <mark>5</mark> of 44 |  |
|                           |  |
| Go Back                   |  |
|                           |  |
| Full Screen               |  |
|                           |  |
| Close                     |  |
|                           |  |
| Quit                      |  |

## (Bricard Ocatahedron Movie)

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui



The Molecular... Katoh-Tanigawa... The rigidity... Back to 2-d Realization in the... The k-plane...

2-plane matroid . . .

Whiteley's Theorem

Home Page

Title Page




Page <mark>6</mark> of <mark>44</mark>

Go Back

Full Screen

Close

Quit





| The Molecular      |
|--------------------|
| Katoh-Tanigawa     |
| The rigidity       |
| Back to 2-d        |
| Realization in the |
| The k-plane        |
| 2-plane matroid    |
| Whiteley's Theorem |
|                    |



Close

Quit

**Theorem 1** A multigraph G can be realized as an infinitesimally rigid body and hinge framework in  $\mathbb{R}^d$  if and only if  $\binom{d+1}{2} - 1$ G has  $\binom{d+1}{2}$  edge-disjoint spanning trees. (Tay and Whiteley, 1984)

Recent Advances in the Generic Rigidity of Structures, Tiong-Seng Tay and Walter Whiteley Structural Topology # 9, 1984 Many body and hinge structures are built under additional constraints. For example in architecture flat panels may be used in which all hinges are coplanar. In molecular chemistry, we can model molecules by rigid atoms hinged along the bond lines so that all hinges to an atom are concurrent. This is the natural projective dual for the architectural condition.



| The Molecular      |
|--------------------|
| Katoh-Tanigawa     |
| The rigidity       |
| Back to 2-d        |
| Realization in the |
| The k-plane        |
| 2-plane matroid    |
| Whiteley's Theorem |

| Home Page    |
|--------------|
| Title Page   |
| •• ••        |
| •            |
| Page 8 of 44 |
| Go Back      |

#### Full Screen

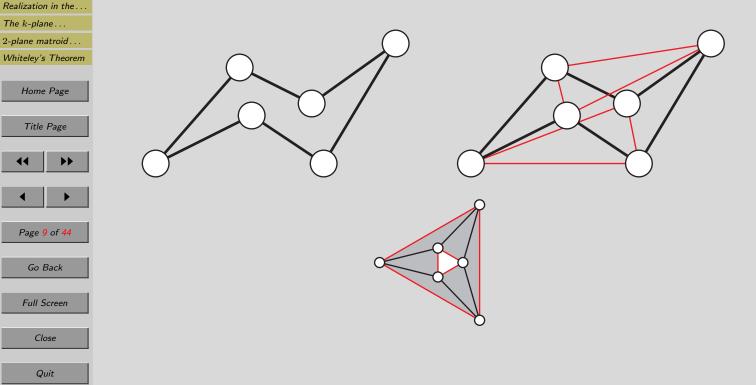
Close

Quit

# 1. The Molecular Conjecture

A multigraph is generically rigid for hinged structures in n-space if and only if it is generically rigid for hinged structures in n-space with all hinges of body  $v_i$  in a hyperplane  $H_i$  of the space.




The Molecular...

Katoh-Tanigawa...

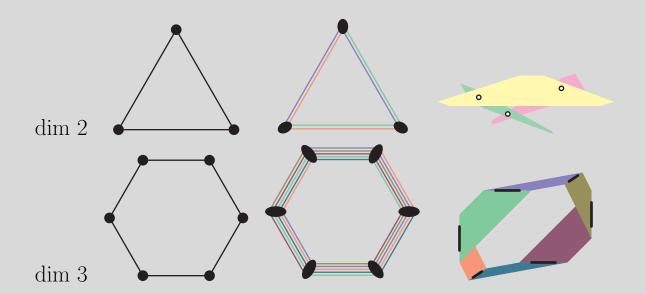
The rigidity... Back to 2-d

#### Jackson-Jordán 2009

**Conjecture 1** Let G(V, E) be a graph with minimum vertex degree at least two. Then  $r(G^2) = 3|V| - 6 - def(G)$ .






The Molecular... Katoh-Tanigawa... The rigidity... Back to 2-d Realization in the.. The k-plane... 2-plane matroid...

Whiteley's Theorem
Home Page
Title Page

Full Screen

Close

Quit





#### The Molecular...

- Katoh-Tanigawa . . .
- The rigidity ...
- Back to 2-d
- Realization in the . .
- The k-plane...
- 2-plane matroid . . .
- Whiteley's Theorem

Home Page





Go Back

Full Screen

Close

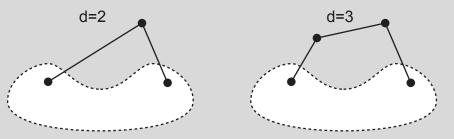
Quit

**Theorem 2** Katoh-Tanigawa 2009: Let  $G = (V, E), |V| \ge 2$ ,  $def(G) = k, k \ge 0$ . Then there exists a (non-parallel if G is simple) panel and hinge realization  $(G, \mathbf{p})$  in  $\mathbb{R}^d$  satisfying

$$rankR(G, \mathbf{p}) = \binom{d+1}{2}(|V|-1) - k$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit




| The Molecular      |
|--------------------|
| Katoh-Tanigawa     |
| The rigidity       |
| Back to 2-d        |
| Realization in the |
| The k-plane        |
| 2-plane matroid    |
| Whiteley's Theorem |

| Home    | Page    |
|---------|---------|
| Title   | Page    |
| ••      | ••      |
| •       | •       |
| Page 12 | 2 of 44 |
| Go E    | Back    |
|         |         |

# 2. Katoh-Tanigawa Proof

**2.1.** Structure of edge minimal G with def(G) = k

- Not edge 3-connected
- Subgraphs are minimal
- If edge 2-connected, then
  - either G contains a proper full-rank subgraph,
  - or, if not, then it is either a cycle of at most d vertices or contains a chain of length at least d.



Close

Full Screen

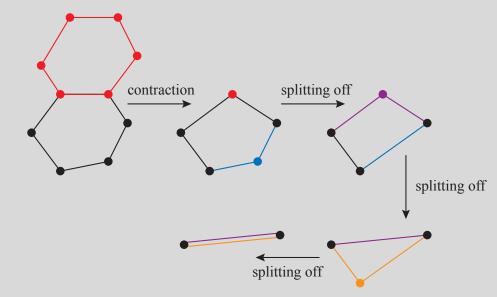


- The Molecular . . . Katoh-Tanigawa . . The rigidity ... Back to 2-d Realization in the . . The k-plane . . .
- 2-plane matroid...
- Whiteley's Theorem










Quit

2.2. Inductive construction of edge minimal Gwith def(G) = 0

There exists a sequence  $G = G_1, G_2, \ldots, G_m, G_i$  minimal w.r.t.  $def(G_i) = 0$ , such that

- $G_m$  is a 2-gon
- $G_{i+1}$  is obtained from  $G_i$  by
  - splitting off at a vertex of degree 2
  - contraction of a proper full rank subgraph





The Molecular... Katoh-Tanigawa... The rigidity... Back to 2-d Realization in the... The k-plane... 2-plane matroid... Whiteley's Theorem

#### Home Page



#### Full Screen

Close

Quit

# 3. The rigidity matrix for body and hinge structures

The set of infinitesimal motions of a body-and-hinge framework  $(G, \mathbf{p})$  is the nullspace of the *rigidity matrix*  $R(G, \mathbf{p})$ . For G = (V, E), and  $\mathbf{p} : V \to \mathbb{R}^d$ R has  $|E|\left(\binom{d+1}{2} - 1\right)$  rows and  $|V|\binom{d+1}{2}$  columns



|                                       | $\begin{bmatrix} 0 & -\omega \\ \omega & 0 \end{bmatrix} \begin{bmatrix} x-a \\ y-b \end{bmatrix} = \begin{bmatrix} \omega b \\ -\omega a \end{bmatrix} + \begin{bmatrix} 0 \\ -\omega a \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ | $\begin{bmatrix} 0 & -\omega \\ \omega & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| The Molecular                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                |
| Katoh-Tanigawa                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                |
| The rigidity                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                |
| Back to 2-d                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                |
| Realization in the                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                |
| The k-plane                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                |
| 2-plane matroid                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                |
| Whiteley's Theorem                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                |
| Home Page Title Page                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                |
| ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                |
| Go Back<br>Full Screen                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                              |
| Close                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                |
| Quit                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                |

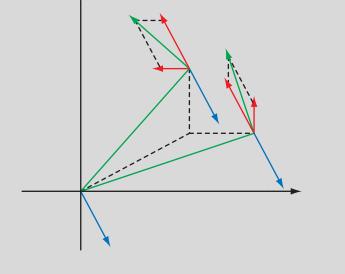


| 1865 1                      | $\left[ \begin{array}{c} \omega \end{array} \right]$ | 0 | y - b | $\begin{bmatrix} 0 \\ 0 \end{bmatrix} =$ | $\begin{bmatrix} -\omega a \end{bmatrix}$ | ] + [ , |
|-----------------------------|------------------------------------------------------|---|-------|------------------------------------------|-------------------------------------------|---------|
| The Molecular               |                                                      |   |       |                                          |                                           |         |
| Katoh-Tanigawa              |                                                      |   |       |                                          |                                           |         |
| The rigidity                |                                                      |   |       |                                          |                                           |         |
| Back to 2-d                 |                                                      |   |       |                                          |                                           |         |
| Realization in the          |                                                      |   |       |                                          |                                           |         |
| The k-plane                 |                                                      |   |       |                                          |                                           |         |
| 2-plane matroid             |                                                      |   |       |                                          |                                           |         |
| Whiteley's Theorem          |                                                      |   |       |                                          |                                           |         |
| Home Page                   |                                                      |   |       |                                          |                                           | Ť       |
| Title Page                  |                                                      |   |       |                                          |                                           |         |
| •• ••                       |                                                      |   |       |                                          |                                           |         |
| • •                         |                                                      |   |       |                                          |                                           |         |
| Page <b>16</b> of <b>44</b> |                                                      |   |       |                                          |                                           |         |
| Go Back                     |                                                      |   |       |                                          |                                           |         |
| Full Screen                 |                                                      |   |       |                                          |                                           |         |
| Close                       |                                                      |   |       |                                          |                                           |         |
| Quit                        |                                                      |   |       |                                          |                                           |         |

$$\begin{bmatrix} 0 & -\omega \\ \omega & 0 \end{bmatrix} \begin{bmatrix} x-a \\ y-b \end{bmatrix} = \begin{bmatrix} \omega b \\ -\omega a \end{bmatrix} + \begin{bmatrix} 0 & -\omega \\ \omega & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qu

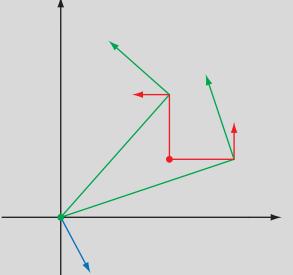



| 7865               | $\begin{bmatrix} 0 & -\omega \\ 0 & 0 \end{bmatrix}$ | $\begin{bmatrix} x-a\\ y-b \end{bmatrix}$ | $= \begin{bmatrix} \omega 0 \\ -\omega a \end{bmatrix}$ | $\left] + \left[ \begin{array}{c} 0 & -\omega \\ \omega & 0 \end{array} \right]$ |
|--------------------|------------------------------------------------------|-------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------|
| The Molecular      |                                                      |                                           |                                                         |                                                                                  |
| Katoh-Tanigawa     |                                                      |                                           |                                                         |                                                                                  |
| The rigidity       |                                                      |                                           |                                                         |                                                                                  |
| Back to 2-d        |                                                      |                                           |                                                         |                                                                                  |
| Realization in the |                                                      |                                           |                                                         |                                                                                  |
| The k-plane        |                                                      |                                           |                                                         |                                                                                  |
| 2-plane matroid    |                                                      |                                           |                                                         |                                                                                  |
| Whiteley's Theorem |                                                      |                                           |                                                         |                                                                                  |
| Home Page          |                                                      |                                           |                                                         | t                                                                                |
| Title Page         |                                                      |                                           |                                                         | ×.                                                                               |
| •• ••              |                                                      |                                           |                                                         |                                                                                  |
|                    |                                                      |                                           |                                                         |                                                                                  |
| Page 17 of 44      |                                                      |                                           |                                                         |                                                                                  |
| Go Back            |                                                      |                                           |                                                         |                                                                                  |
| Full Screen        |                                                      |                                           |                                                         |                                                                                  |
| Close              |                                                      |                                           |                                                         |                                                                                  |
| Quit               |                                                      |                                           |                                                         | I V                                                                              |

 $\begin{bmatrix} 0 & -\omega \\ \omega & 0 \end{bmatrix} \begin{bmatrix} x-a \\ y-b \end{bmatrix} = \begin{bmatrix} \omega b \\ -\omega a \end{bmatrix} + \begin{bmatrix} 0 & -\omega \\ \omega & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ 



| 1865                        |
|-----------------------------|
| The Molecular               |
| Katoh-Tanigawa              |
| The rigidity                |
| Back to 2-d                 |
| Realization in the          |
| The k-plane                 |
| 2-plane matroid             |
| Whiteley's Theorem          |
|                             |
| Home Page                   |
|                             |
| Title Page                  |
|                             |
| ••                          |
|                             |
|                             |
|                             |
| Page <b>18</b> of <b>44</b> |
|                             |
| Go Back                     |
|                             |
| Full Screen                 |
| Close                       |
| Ciose                       |
| Quit                        |
| Quit                        |

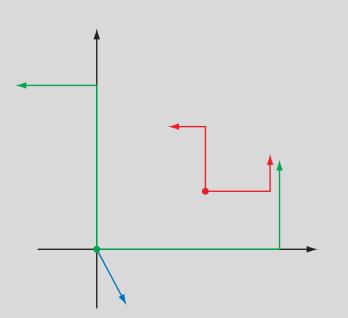

$$\begin{bmatrix} 0 & -\omega \\ \omega & 0 \end{bmatrix} \begin{bmatrix} x-a \\ y-b \end{bmatrix} = \begin{bmatrix} \omega b \\ -\omega a \end{bmatrix} + \begin{bmatrix} 0 & -\omega \\ \omega & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$





| 1865 131                    | $\lfloor \omega$ | $0 \rfloor \lfloor y$ | $b - b \rfloor =$ | [ -ω |
|-----------------------------|------------------|-----------------------|-------------------|------|
| The Molecular               |                  |                       |                   |      |
| Katoh-Tanigawa              |                  |                       |                   |      |
| The rigidity                |                  |                       |                   |      |
| Back to 2-d                 |                  |                       |                   |      |
| Realization in the          |                  |                       |                   |      |
| The k-plane                 |                  |                       |                   |      |
| 2-plane matroid             |                  |                       |                   |      |
| Whiteley's Theorem          |                  |                       |                   |      |
| Home Page                   |                  |                       |                   |      |
| Title Page                  |                  |                       |                   |      |
| •• ••                       |                  |                       |                   |      |
| • •                         |                  |                       |                   |      |
| Page <b>19</b> of <b>44</b> |                  |                       |                   |      |
| Go Back                     |                  |                       |                   |      |
| Full Screen                 |                  |                       |                   |      |
| Close                       |                  |                       |                   |      |
|                             |                  |                       |                   |      |
| Quit                        |                  |                       |                   |      |

$$\begin{bmatrix} 0 & -\omega \\ \omega & 0 \end{bmatrix} \begin{bmatrix} x-a \\ y-b \end{bmatrix} = \begin{bmatrix} \omega b \\ -\omega a \end{bmatrix} + \begin{bmatrix} 0 & -\omega \\ \omega & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$








$$\begin{bmatrix} 0 & -\omega \\ \omega & 0 \end{bmatrix} \begin{bmatrix} x-a \\ y-b \end{bmatrix} = \begin{bmatrix} \omega b \\ -\omega a \end{bmatrix} + \begin{bmatrix} 0 & -\omega \\ \omega & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qu





| 1865 - 34          | $\begin{bmatrix} a_1 \\ b_1 \end{bmatrix} + \begin{bmatrix} 0 & -\omega_1 \\ \omega_1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ | $\begin{bmatrix} a_2 \\ b_2 \end{bmatrix} + \begin{bmatrix} 0 & -\omega_2 \\ \omega_2 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| The Molecular      |                                                                                                                                               |                                                                                                                                               |
| Katoh-Tanigawa     |                                                                                                                                               |                                                                                                                                               |
| The rigidity       |                                                                                                                                               |                                                                                                                                               |
| Back to 2-d        |                                                                                                                                               |                                                                                                                                               |
| Realization in the |                                                                                                                                               |                                                                                                                                               |
| The k-plane        |                                                                                                                                               |                                                                                                                                               |
| 2-plane matroid    |                                                                                                                                               |                                                                                                                                               |
| Whiteley's Theorem |                                                                                                                                               |                                                                                                                                               |
| Home Page          |                                                                                                                                               |                                                                                                                                               |
| Title Page         |                                                                                                                                               |                                                                                                                                               |
| <b>∢ →</b>         |                                                                                                                                               |                                                                                                                                               |
| •                  |                                                                                                                                               |                                                                                                                                               |
| Page 21 of 44      |                                                                                                                                               |                                                                                                                                               |
| Go Back            |                                                                                                                                               |                                                                                                                                               |
| Full Screen        |                                                                                                                                               |                                                                                                                                               |
| Close              |                                                                                                                                               |                                                                                                                                               |
| Quit               |                                                                                                                                               |                                                                                                                                               |



| The Molecular      |
|--------------------|
| Katoh-Tanigawa     |
| The rigidity       |
| Back to 2-d        |
| Realization in the |
| The k-plane        |
| 2-plane matroid    |
| Whiteley's Theorem |

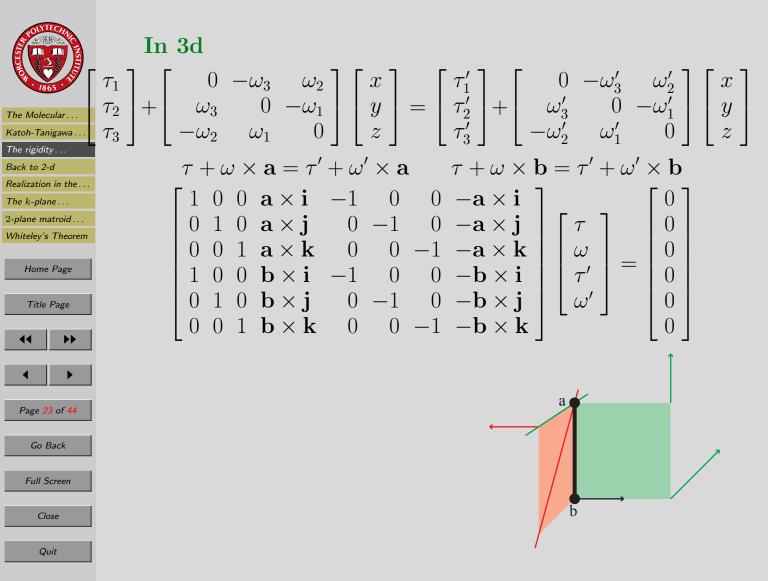
Home Page





Page 22 of 44

Go Back

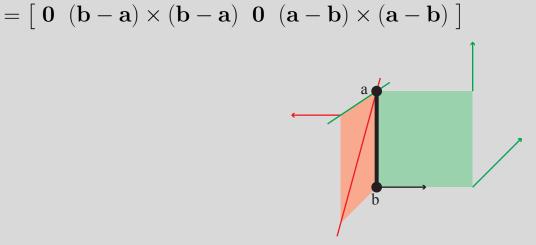

Full Screen

Close

Quit

$$\begin{bmatrix} 1 & 0 & -q & -1 & 0 & q \\ 0 & 1 & p & 0 & -1 & -p \end{bmatrix} \begin{bmatrix} a_1 \\ b_1 \\ \omega_1 \\ a_2 \\ b_2 \\ \omega_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui






#### Row dependence

 $[(\mathbf{b} - \mathbf{a}) \ (\mathbf{a} - \mathbf{b})] \begin{bmatrix} 1 \ 0 \ 0 \ \mathbf{a} \times \mathbf{i} \ -1 \ 0 \ 0 \ -\mathbf{a} \times \mathbf{i} \\ 0 \ 1 \ 0 \ \mathbf{a} \times \mathbf{j} \ 0 \ -1 \ 0 \ -\mathbf{a} \times \mathbf{j} \\ 0 \ 0 \ 1 \ \mathbf{a} \times \mathbf{k} \ 0 \ 0 \ -1 \ -\mathbf{a} \times \mathbf{k} \\ 1 \ 0 \ 0 \ \mathbf{b} \times \mathbf{i} \ -1 \ 0 \ 0 \ -\mathbf{b} \times \mathbf{i} \\ 0 \ 1 \ 0 \ \mathbf{b} \times \mathbf{j} \ 0 \ -1 \ 0 \ -\mathbf{b} \times \mathbf{j} \\ 0 \ 1 \ \mathbf{b} \times \mathbf{k} \ 0 \ 0 \ -1 \ -\mathbf{b} \times \mathbf{k} \end{bmatrix}$ 

| The Molecular      |
|--------------------|
| Katoh-Tanigawa     |
| The rigidity       |
| Back to 2-d        |
| Realization in the |
| The k-plane        |
| 2-plane matroid    |
| Whiteley's Theorem |
|                    |
| Home Page          |
|                    |
| Title Page         |



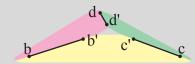
●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qu

Quit

Page 24 of 44

Go Back

Full Screen




| The Molecular      |
|--------------------|
| Katoh-Tanigawa     |
| The rigidity       |
| Back to 2-d        |
| Realization in the |
| The k-plane        |
| 2-plane matroid    |
| Whiteley's Theorem |

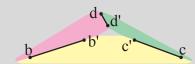
Home Page

| Title Page         |  |
|--------------------|--|
|                    |  |
| <b>44 &gt;&gt;</b> |  |
|                    |  |
| ◀ ▶                |  |
|                    |  |
| Page 25 of 44      |  |
|                    |  |
| Go Back            |  |
|                    |  |
| Full Screen        |  |

| [ | 1 0 0       | $\mathbf{b} 	imes \mathbf{i}$  | -1 | 0  | 0  | $-\mathbf{b} 	imes \mathbf{i}$  | 0  | 0  | 0  | 0                               |
|---|-------------|--------------------------------|----|----|----|---------------------------------|----|----|----|---------------------------------|
|   | 0 1 0       | $\mathbf{b} 	imes \mathbf{j}$  | 0  | -1 | 0  | $-\mathbf{b} 	imes \mathbf{j}$  | 0  | 0  | 0  | 0                               |
|   | $0 \ 0 \ 1$ | $\mathbf{b} \times \mathbf{k}$ | 0  | 0  | -1 | $-\mathbf{b}\times\mathbf{k}$   | 0  | 0  | 0  | 0                               |
|   | 1 0 0       | $\mathbf{b}' 	imes \mathbf{i}$ | -1 | 0  | 0  | $-{f b}'	imes{f i}$             | 0  | 0  | 0  | 0                               |
|   | 0 1 0       | $\mathbf{b}' 	imes \mathbf{j}$ | 0  | -1 | 0  | $-\mathbf{b}' 	imes \mathbf{j}$ | 0  | 0  | 0  | 0                               |
| l | $0 \ 0 \ 1$ | $\mathbf{b}'\times\mathbf{k}$  | 0  | 0  | -1 | $-\mathbf{b}'\times\mathbf{k}$  | 0  | 0  | 0  | 0                               |
| l | 1 0 0       | $\mathbf{c} 	imes \mathbf{i}$  | 0  | 0  | 0  | 0                               | -1 | 0  | 0  | $-\mathbf{c} 	imes \mathbf{i}$  |
|   | 0 1 0       | $\mathbf{c} 	imes \mathbf{j}$  | 0  | 0  | 0  | 0                               | 0  | -1 | 0  | $-\mathbf{c} 	imes \mathbf{j}$  |
|   | $0 \ 0 \ 1$ | $\mathbf{c} 	imes \mathbf{k}$  | 0  | 0  | 0  | 0                               | 0  | 0  | -1 | $-\mathbf{c} 	imes \mathbf{k}$  |
|   | 1 0 0       | $\mathbf{c}' 	imes \mathbf{i}$ | 0  | 0  | 0  | 0                               | -1 | 0  | 0  | $-\mathbf{c}' 	imes \mathbf{i}$ |
|   | 0 1 0       | $\mathbf{c}' 	imes \mathbf{j}$ | 0  | 0  | 0  | 0                               | 0  | -1 | 0  | $-\mathbf{c}' 	imes \mathbf{j}$ |
|   | $0 \ 0 \ 1$ | $\mathbf{c}' 	imes \mathbf{k}$ | 0  | 0  | 0  | 0                               | 0  | 0  | -1 | $-\mathbf{c}' 	imes \mathbf{k}$ |
|   | 0 0 0       | 0                              | 1  | 0  | 0  | $\mathbf{d} 	imes \mathbf{i}$   | -1 | 0  |    | $-\mathbf{d} 	imes \mathbf{i}$  |
|   | 0 0 0       | 0                              | 0  | 1  | 0  | $\mathbf{d} 	imes \mathbf{j}$   | 0  | -1 | 0  | $-\mathbf{d} 	imes \mathbf{j}$  |
|   | 0 0 0       | 0                              | 0  | 0  | 1  | $\mathbf{d} 	imes \mathbf{k}$   | 0  | 0  | -1 | $-\mathbf{d} 	imes \mathbf{k}$  |
|   | 0 0 0       | 0                              | 1  | 0  | 0  | $\mathbf{d}' 	imes \mathbf{i}$  | -1 | 0  | 0  | $-\mathbf{d'} 	imes \mathbf{i}$ |
|   | 0 0 0       | 0                              | 0  | 1  | 0  | $\mathbf{d}' 	imes \mathbf{j}$  | 0  | -1 | 0  | $-\mathbf{d'} 	imes \mathbf{j}$ |
|   | 0 0 0       | 0                              | 0  | 0  | 1  | $\mathbf{d}' 	imes \mathbf{k}$  | 0  | 0  | -1 | $-\mathbf{d'} 	imes \mathbf{k}$ |



●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit




| The Molecular      |
|--------------------|
| Katoh-Tanigawa     |
| The rigidity       |
| Back to 2-d        |
| Realization in the |
| The k-plane        |
| 2-plane matroid    |
| Whiteley's Theorem |

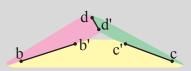
| Home | Page |
|------|------|
|------|------|

| Title Page                 |  |
|----------------------------|--|
|                            |  |
| •• ••                      |  |
| • •                        |  |
|                            |  |
| Page <mark>26</mark> of 44 |  |
| Go Back                    |  |
|                            |  |
| Full Screen                |  |

| Γ | 1 | 0 | 0 | $\mathbf{b} 	imes \mathbf{i}$  | -1 | 0  | 0  | $-\mathbf{b} 	imes \mathbf{i}$  | 0  | 0  | 0  | 0                               |
|---|---|---|---|--------------------------------|----|----|----|---------------------------------|----|----|----|---------------------------------|
|   | 0 | 1 | 0 | $\mathbf{b} 	imes \mathbf{j}$  | 0  | -1 | 0  | $-\mathbf{b} 	imes \mathbf{j}$  | 0  | 0  | 0  | 0                               |
|   | 0 | 0 | 1 | $\mathbf{b} \times \mathbf{k}$ | 0  | 0  | -1 | $-\mathbf{b}\times\mathbf{k}$   | 0  | 0  | 0  | 0                               |
|   | 1 | 0 | 0 | $\mathbf{b}' 	imes \mathbf{i}$ | -1 | 0  | 0  | $-\mathbf{b}' 	imes \mathbf{i}$ | 0  | 0  | 0  | 0                               |
|   | 0 | 1 | 0 | $\mathbf{b}' 	imes \mathbf{j}$ | 0  | -1 | 0  | $-\mathbf{b}' 	imes \mathbf{j}$ | 0  | 0  | 0  | 0                               |
|   | 0 | 0 | 1 | $\mathbf{b}'\times\mathbf{k}$  | 0  | 0  | -1 | $-\mathbf{b}'\times\mathbf{k}$  | 0  | 0  | 0  | 0                               |
|   | 1 | 0 | 0 | $\mathbf{c} 	imes \mathbf{i}$  | 0  | 0  | 0  | 0                               | -1 | 0  | 0  | $-\mathbf{c} 	imes \mathbf{i}$  |
|   | 0 | 1 | 0 | $\mathbf{c} 	imes \mathbf{j}$  | 0  | 0  | 0  | 0                               | 0  | -1 | 0  | $-\mathbf{c} 	imes \mathbf{j}$  |
|   | 0 | 0 | 1 | $\mathbf{c} 	imes \mathbf{k}$  | 0  | 0  | 0  | 0                               | 0  | 0  | -1 | $-\mathbf{c} 	imes \mathbf{k}$  |
|   | 1 | 0 | 0 | $\mathbf{c}' 	imes \mathbf{i}$ | 0  | 0  | 0  | 0                               | -1 | 0  | 0  | $-\mathbf{c}' 	imes \mathbf{i}$ |
|   | 0 | 1 | 0 | $\mathbf{c}' 	imes \mathbf{j}$ | 0  | 0  | 0  | 0                               | 0  | -1 | 0  | $-\mathbf{c}' 	imes \mathbf{j}$ |
|   | 0 | 0 | 1 | $\mathbf{c}' 	imes \mathbf{k}$ | 0  | 0  | 0  | 0                               | 0  | 0  | -1 | $-\mathbf{c}' 	imes \mathbf{k}$ |
|   | 0 | 0 | 0 | 0                              | 1  | 0  | 0  | $\mathbf{d} 	imes \mathbf{i}$   | -1 | 0  | 0  | $-\mathbf{d} 	imes \mathbf{i}$  |
|   | 0 | 0 | 0 | 0                              | 0  | 1  | 0  | $\mathbf{d} 	imes \mathbf{j}$   | 0  | -1 | 0  | $-\mathbf{d} 	imes \mathbf{j}$  |
|   | 0 | 0 | 0 | 0                              | 0  | 0  | 1  | $\mathbf{d} 	imes \mathbf{k}$   | 0  | 0  | -1 | $-\mathbf{d}\times\mathbf{k}$   |
|   | 0 | 0 | 0 | 0                              | 1  | 0  | 0  | $\mathbf{d}' 	imes \mathbf{i}$  | -1 | 0  | 0  | $-\mathbf{d}' 	imes \mathbf{i}$ |
|   | 0 | 0 | 0 | 0                              | 0  | 1  | 0  | $\mathbf{d}' 	imes \mathbf{j}$  | 0  | -1 | 0  | $-\mathbf{d}' 	imes \mathbf{j}$ |
|   | 0 | 0 | 0 | 0                              | 0  | 0  | 1  | $\mathbf{d}' 	imes \mathbf{k}$  | 0  | 0  | -1 | $-\mathbf{d'} 	imes \mathbf{k}$ |






| The Molecular      |
|--------------------|
| Katoh-Tanigawa     |
| The rigidity       |
| Back to 2-d        |
| Realization in the |
| The k-plane        |
| 2-plane matroid    |
| Whiteley's Theorem |
|                    |

Home Page

Close



| $\begin{bmatrix} 1 & 0 & \mathbf{b} \times \mathbf{b} \end{bmatrix}$ | <b>i</b> -1 | 0  | 0  | $-\mathbf{b} 	imes \mathbf{i}$  | 0  | 0  | 0  | 0                                |
|----------------------------------------------------------------------|-------------|----|----|---------------------------------|----|----|----|----------------------------------|
| $0 1 0 \mathbf{b} \times$                                            | <b>j</b> 0  | -1 | 0  | $-\mathbf{b} \times \mathbf{j}$ | 0  | 0  | 0  | 0                                |
| $0 \ 0 \ 1 \ \mathbf{b} \times$                                      | <b>k</b> 0  | 0  | -1 | $-\mathbf{b}\times\mathbf{k}$   | 0  | 0  | 0  | 0                                |
| $1 \ 0 \ 0 \ \mathbf{b}' \times$                                     | <b>i</b> -1 | 0  | 0  | $-\mathbf{b}'\times\mathbf{i}$  | 0  | 0  | 0  | 0                                |
| $0 1 0 \mathbf{b}' \times$                                           | <b>j</b> 0  | -1 | 0  | $-\mathbf{b}' 	imes \mathbf{j}$ | 0  | 0  | 0  | 0                                |
| $1 \ 0 \ 0 \ \mathbf{c} \times$                                      | <b>i</b> 0  | 0  | 0  | 0                               | -1 | 0  | 0  | $-\mathbf{c} \times \mathbf{i}$  |
| 0 1 0 $c \times$                                                     | <b>j</b> 0  | 0  | 0  | 0                               | 0  | -1 | 0  | $-\mathbf{c} \times \mathbf{j}$  |
| $0 \ 0 \ 1 \ c \times$                                               | <b>k</b> 0  | 0  | 0  | 0                               | 0  | 0  | -1 | $-\mathbf{c} \times \mathbf{k}$  |
| $1 \ 0 \ 0 \ \mathbf{c}' \times$                                     | <b>i</b> 0  | 0  | 0  | 0                               | -1 | 0  | 0  | $-\mathbf{c}' \times \mathbf{i}$ |
| $0 \ 1 \ 0 \ c' \times$                                              | <b>j</b> 0  | 0  | 0  | 0                               |    | -1 |    | $-\mathbf{c}' \times \mathbf{j}$ |
| 0 0 0 0                                                              | 1           | 0  | 0  | $\mathbf{d} 	imes \mathbf{i}$   | -1 | 0  | 0  | $-\mathbf{d} \times \mathbf{i}$  |
| 0 0 0 0                                                              | 0           | 1  | 0  | $\mathbf{d} 	imes \mathbf{j}$   |    |    |    | $-\mathbf{d} \times \mathbf{j}$  |
| 0 0 0 0                                                              | 0           | 0  | 1  | $\mathbf{d} 	imes \mathbf{k}$   | 0  | 0  | -1 | $-\mathbf{d} \times \mathbf{k}$  |
| 0 0 0 0                                                              | 1           | 0  | 0  | $\mathbf{d}' 	imes \mathbf{i}$  | -1 | 0  | 0  | $-\mathbf{d'} \times \mathbf{i}$ |
| 0 0 0 0                                                              | 0           | 1  | 0  | $\mathbf{d}' 	imes \mathbf{j}$  | 0  | -1 | 0  | $-\mathbf{d'} \times \mathbf{j}$ |



●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit



|                    | $\begin{bmatrix} 1 & 0 & \mathbf{b} \times \mathbf{i} \end{bmatrix}$ | -1 0 | $0 - \mathbf{b} \times \mathbf{i}$  |                                           |
|--------------------|----------------------------------------------------------------------|------|-------------------------------------|-------------------------------------------|
| . 1865 . 2         | $0 1 0 \mathbf{b} \times \mathbf{j}$                                 | 0 -1 | $0 - \mathbf{b} \times \mathbf{j}$  |                                           |
| The Molecular      | $0 0 1 \mathbf{b} \times \mathbf{k}$                                 | 0 0  | $-1 -\mathbf{b} \times \mathbf{k}$  |                                           |
| Katoh-Tanigawa     |                                                                      | 0 0  |                                     |                                           |
| The rigidity       | $1 \ 0 \ \mathbf{b}' \times \mathbf{i}$                              | -1 0 | $0 - \mathbf{b}' \times \mathbf{i}$ |                                           |
| Back to 2-d        | $0 1 0 \mathbf{b}' \times \mathbf{j}$                                | 0 -1 | $0 - \mathbf{b}' \times \mathbf{j}$ |                                           |
| Realization in the |                                                                      | 0 1  | $0  \mathbf{D} \vee \mathbf{J}$     |                                           |
| The k-plane        | $1 \ 0 \ \mathbf{c} \times \mathbf{i}$                               |      |                                     | $-1$ 0 0 $-\mathbf{c} \times \mathbf{i}$  |
| 2-plane matroid    | $0 1 0 \mathbf{c} \times \mathbf{j}$                                 |      |                                     | $0 -1  0 -\mathbf{c} \times \mathbf{j}$   |
| Whiteley's Theorem |                                                                      |      |                                     | o i o o nj                                |
|                    | $0 \ 0 \ 1 \ \mathbf{c} \times \mathbf{k}$                           |      |                                     | $0  0  -1  -\mathbf{c} \times \mathbf{k}$ |
| Home Page          | 1 0 0 $\mathbf{c}' \times \mathbf{i}$                                |      |                                     | $-1$ 0 0 $-\mathbf{c}' \times \mathbf{i}$ |
| Title Page         | $0 1 0 \mathbf{c}' \times \mathbf{j}$                                |      |                                     | $0 -1  0 -\mathbf{c'} \times \mathbf{j}$  |
|                    |                                                                      | 1 0  | $0  \mathbf{d} \times \mathbf{i}$   | $-1$ 0 0 $-\mathbf{d} \times \mathbf{i}$  |
|                    |                                                                      | 0 1  | $0  \mathbf{d} \times \mathbf{j}$   | $0 -1  0 -\mathbf{d} \times \mathbf{j}$   |
| •                  |                                                                      | 0 0  | 1 $\mathbf{d} \times \mathbf{k}$    | $0  0  -1  -\mathbf{d} \times \mathbf{k}$ |
| Page 28 of 44      |                                                                      | 1 0  | $0  \mathbf{d'} \times \mathbf{i}$  | $-1$ 0 0 $-\mathbf{d'} \times \mathbf{i}$ |
|                    |                                                                      | 0  1 | $0  \mathbf{d'} \times \mathbf{j}$  | $0 -1  0 -\mathbf{d'} \times \mathbf{j}$  |
| Go Back            | L                                                                    |      | J                                   | 5                                         |



Close

Quit



d'd' b' c' c



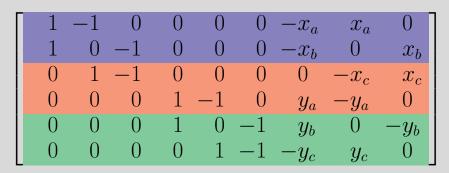
The Molecular... Katoh-Tanigawa... The rigidity... Back to 2-d Realization in the... The k-plane... 2-plane matroid... Whiteley's Theorem

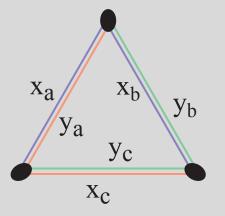
Home Page

| Title I | Page  |
|---------|-------|
| ••      | ••    |
| •       | ►     |
| Page 29 | of 44 |

Example: Let G be a triangle, whose edges, a, b, c are representing pins and are located at  $(x_a, y_a), (x_b, y_b), (x_c, y_c)$  respectively. The vertex set represents the bodies, each body has two pins on it.

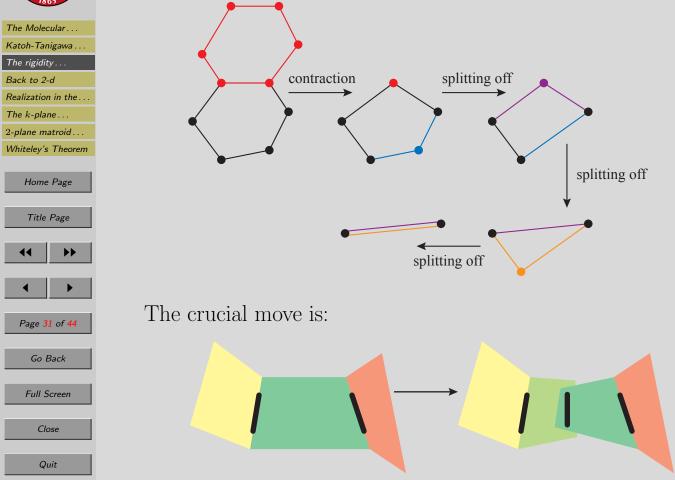
$$\begin{bmatrix} 1 & 0 & -x_a & -1 & 0 & x_a & 0 & 0 & 0 \\ 0 & 1 & y_a & 0 & -1 & -y_a & 0 & 0 & 0 \\ 1 & 0 & -x_b & 0 & 0 & 0 & -1 & 0 & x_b \\ 0 & 1 & y_b & 0 & 0 & 0 & 0 & -1 & -y_b \\ 0 & 0 & 0 & 1 & 0 & -x_c & -1 & 0 & x_c \\ 0 & 0 & 0 & 0 & 1 & y_a & 0 & -1 & -y_a \end{bmatrix}$$


Go Back


Full Screen



| The Molecular      |
|--------------------|
| Katoh-Tanigawa     |
| The rigidity       |
| Back to 2-d        |
| Realization in the |
| The k-plane        |
| 2-plane matroid    |
| Whiteley's Theorem |
|                    |
| Home Page          |
|                    |
| Title Page         |
|                    |
| <b>44 &gt;&gt;</b> |
|                    |
|                    |
|                    |
| Page 30 of 44      |
|                    |
| Go Back            |
|                    |
| Full Screen        |
|                    |
| Close              |
|                    |
| Quit               |
|                    |


#### re-arrange the rows/columns:







Now use the inductive constructions to construct embeddings of the correct rank.



●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit



 The Molecular...

 Katoh-Tanigawa...

 The rigidity...

 Back to 2-d

 Realization in the...

 The k-plane...

 2-plane matroid...

Whiteley's Theorem



Close

Quit

## 4. Back to 2-d

Conjecture: A generically rigid body pin framework, remains first-order rigid for realizations generic under the condition that all pins of each body are collinear, without restriction of how many bodies a pin is incident to.

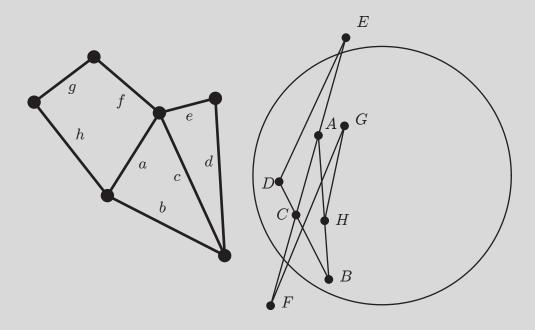


| The Molecular      |
|--------------------|
| Katoh-Tanigawa     |
| The rigidity       |
| Back to 2-d        |
| Realization in the |
| The k-plane        |
| 2-plane matroid    |

Whiteley's Theorem Home Page



Full Screen


Close

Quit

# 5. Realization in the Plane.

**Theorem 3** If G = (V, E) is simple, then a pin collinear structure exists.

Take any generic embedding of the structure graph G = (V, E)in  $\mathbb{R}^2$ . Form the polar of that embedding.

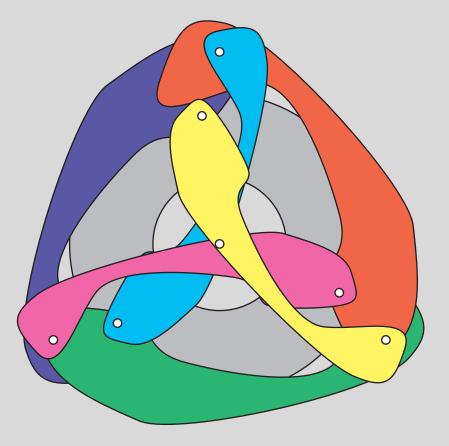




# The Molecular... Katoh-Tanigawa... The rigidity... Back to 2-d Realization in the... The k-plane... 2-plane matroid...

Whiteley's Theorem

Home Page


Title Page

• •

Page 34 of 44 Go Back

Full Screen

Close Quit A general body-pin structure:



The incidence structure is a hyper-graph. Does it have a pin collinear realization?

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit



| The Molecular      |
|--------------------|
| Katoh-Tanigawa     |
| The rigidity       |
| Back to 2-d        |
| Realization in the |
| The k-plane        |
| 2-plane matroid    |
| Whiteley's Theorem |



Title Page



Close

Quit



**Theorem 4** If the 2-plane matroid of an incidence structure has rank a + 2b - 2, then placing a points on any line in the plane with generic x-coordinates and joining them appropriately with b rigid bars gives a structure which is infinitesimally rigid in the plane.



The Molecular... Katoh-Tanigawa... The rigidity... Back to 2-d Realization in the... The k-plane... 2-plane matroid... Whiteley's Theorem



Go Back

Full Screen

Close

Quit

# 6. The *k*-plane matroids

Given: A Hypergraph: (A, B; I)The *k*-plane matroid on *I* has has independent sets  $I' \subseteq I$  defined via:

For all  $I'' \subseteq I'$ , we have

 $|I''| \le |A(I'')| + k|B(I'')| - k$ 



The Molecular... Katoh-Tanigawa... The rigidity... Back to 2-d Realization in the.. The k-plane...

2-plane matroid.... Whiteley's Theorem



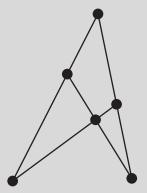




Go Back

Full Screen

Close


## The 2-plane matroids

Given: A Hypergraph: (A, B; I)The 2-plane matroid on I has has independent sets  $I' \subseteq I$ defined via:

For all  $I'' \subseteq I'$ , we have

 $|I''| \le |A(I'')| + 2|B(I'')| - 2$ 

A: The linesB: the pointsI the incidence relation





The Molecular... Katoh-Tanigawa... The rigidity... Back to 2-d Realization in the... The k-plane...

2-plane matroid.... Whiteley's Theorem

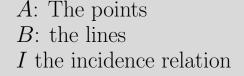


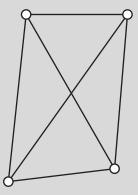




Go Back

Full Screen


Close


## The 2-plane matroids

Given: A Hypergraph: (A, B; I)The 2-plane matroid on I has has independent sets  $I' \subseteq I$ defined via:

For all  $I'' \subseteq I'$ , we have

 $|I''| \le |A(I'')| + 2|B(I'')| - 2$ 





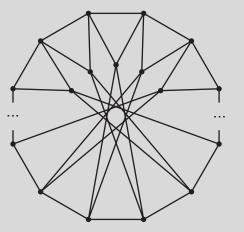


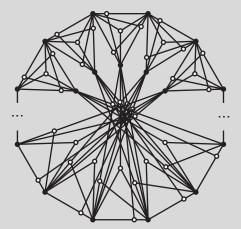
The Molecular... Katoh-Tanigawa... The rigidity... Back to 2-d Realization in the... The k-plane... 2-plane matroid...

Whiteley's Theorem

Home Page




## Close


Quit

# 7. 2-plane matroid and connectivity of the incidence graph

**Theorem 5** Let G = (A, B, I) be an incidence graph. If G is vertex 4-connected then I is 2-tight.

We can construct 3-connected incidence structures which are not tight.







 The Molecular...

 Katoh-Tanigawa...

 The rigidity...

 Back to 2-d

 Realization in the...

 The k-plane...

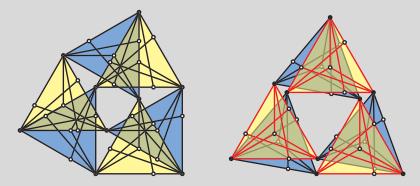
 2-plane matroid...

Whiteley's Theorem





Go Back


Full Screen

Close

Quit

**Theorem 6** Let G = (A, B, I) be an incidence graph. If G is vertex 4-connected then I is 2-tight.

We can construct 3-connected incidence structures which are not tight.





#### The Molecular... Katoh-Tanigawa... The rigidity... Back to 2-d Realization in the... The k-plane... 2-plane matroid... Whiteley's Theorem

Home Page



Page <mark>41</mark> of <mark>44</mark>

Go Back Full Screen

# 8. Whiteley's Theorem

Given an incidence graph G = (B, J; I) the following are equivalent:

(i) G has a realization as an independent (isostatic) identified body and joint framework in the plane.
(ii) G satisfies

$$2i \le 3b + 2j - 3(=)$$

and, for every subset of bodies and induced subgraph of attached joints,

 $2i' \le 3b' + 2j' - 3.$ 

(iii) G has an independent (isostatic) realization as an identified body and joint framework in the plane such that each body has all its joints collinear.



| The Molecular      |
|--------------------|
| Katoh-Tanigawa     |
| The rigidity       |
| Back to 2-d        |
| Realization in the |
| The k-plane        |
| 2-plane matroid    |
| Whiteley's Theorem |
|                    |



Full Screen

Close

Quit

In the plane the parallel drawing and rigidity are equivalent. A parallel-body pin framework in d-space is a collection of points (pins) and bodies (collections of the pins) and a realization of the pins as points in d-space. The body is assumed to group its pins into a parallel-tight unit, with only translations.





The Molecular... Katoh-Tanigawa... The rigidity... Back to 2-d Realization in the... The k-plane... 2-plane matroid... Whiteley's Theorem

| Home Page          |  |
|--------------------|--|
| Title Page         |  |
|                    |  |
| <b>44 &gt;&gt;</b> |  |
| • •                |  |
| Page 43 of 44      |  |
|                    |  |
| Go Back            |  |

Full Screen

Close

Quit

**Theorem 7** Given an incidence graph G = (B, J; I) the following are equivalent:

(i) G has a realization as an independent ( tight) identified parallel-body pin framework in d-space.

(ii) G satisfies  $di \leq (d+1)b + dj - d + 1 (=)$  and, for every subset of bodies and induced subgraph of attached joints,  $di' \leq (d+1)b' + dj' - d + 1$ .

(iii) G has an independent (tight) realization as a parallelbody pin framework in d-space such that each body has all its joints collinear.



The Molecular... Katoh-Tanigawa... The rigidity... Back to 2-d Realization in the... The k-plane ... 2-plane matroid...

Whiteley's Theorem

Home Page



Full Screen

Close

Quit

### **Conjecture 2 (Parallel Drawing Flattening Conjecture)** If a parallel body-and-pin incidence structure is generically tight for generic configurations in d-space, then it will remain tight for realizations generic under the constraint that all pins for a body are coplanar.

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit