

What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in 3D
Bibliography

Close

Quit

Graph groups 2010

Herman and Mary Servatius

Home Page
Title Page
•• ••
Page 2 of 41
Go Back
Full Screen
Close
Quit

1. What is a graph group

$$V = \{a, b, c, ...\} \qquad E = \{(x, y), (z, w), ...\}$$

$$F(\Gamma) = \langle a, b, c, \dots \mid xy = yx, zw = wz \dots \rangle$$

$$\Gamma = K_n \Longrightarrow F(\Gamma)$$
 free abelian of rank k

 $\Gamma = K_n^c \Longrightarrow F(\Gamma)$ free of rank k.

Theorem: (Droms 1983) [3] $F(\Gamma) \cong F(\Gamma') \iff \Gamma \cong \Gamma'$

Combinatorics of Graph Groups

Word problem, conjugacy problem, centralizer problem are all solved by algorithms linear in the number of edges.

Algorithmic questions are quite tractable.

Theorem: (Laurence 1995) [6] The automorphisms of a graph group are generated by Partially Inner Automorphisms Graph Automorphisms Generator Inversions Pendant Translations

What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in 3D
Bibliography

Home Page
Title Page
•• ••
Page 4 of 41
Go Back
Full Screen
Close

What are Artin groups ?

Commutation Relation: ab = ba

Braid Relation: aba = bab

```
Artin Relation: aba \cdots = bab \cdots
```

```
Coxeter adds a^2 = 1.
```


What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in $3D$
Bibliography

Home Page
Title Page
•• ••
Page 5 of 41
Go Back
Full Screen
Close

Coherence

A group is *coherent* if every finitely generated subgroup is finitely presented.

Free groups are coherent.

Free abelian groups a coherent.

Theorem 1 (Droms-1983) [2] A graph group $G(\Gamma)$ is coherent if and only each cycle of length greater than 3 has a chord.

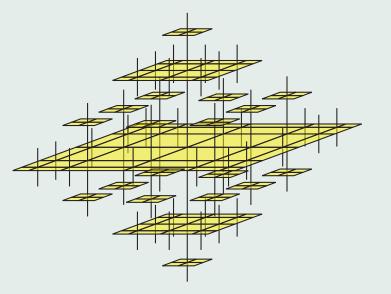
What is a graph group
Graph Groups in $1D$
Graph Groups in 2D
Graph Groups in 3D
Bibliography

2. Graph Groups in 1D

The Cayley graphs can be easily constructed.

The Cayley complex can be easily constructed and have a nice geometry.

The Eilenberg-MacLane spaces are also easy to construct.



What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in $3D$
Bibliography

3. Graph Groups in 2D

The graph group $F(\{a, b\}, \{(a, b)\})$ is the fundamental group of the torus.

Can we find other surface groups?

What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in $3D$
Bibliography
Home Page
Title Page
•• ••
Page 8 of 41
1 age 0 01 41
Go Back

Full Screen

Close

Quit

The following pullback diagram realizes the commutator subgroup of $F(\Gamma)$.

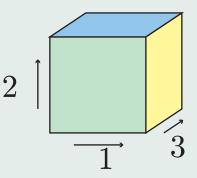
 $U_{\Gamma} \longrightarrow U_{K}$

 $X_{\Gamma} \longrightarrow X_{K}$

 $X_K = [(S_1)^n]_2$ $U_K = [\mathbb{R}^n]_2$

Theorem 2 Let Z be a cover of the Cayley complex of F_{Γ} , and let Y be a subcomplex of Z with the property that any face of Z which contains at least two incident edges of Y is also a face of Y. Then the inclusion map $i: Y \to Z$ induces a monomorphism $i_*: \pi_1(Y) \to \pi_1(Z)$.

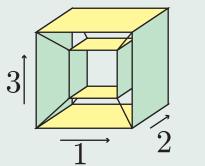
 Γ a triangle. 3D Cube

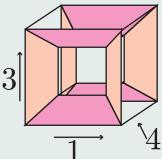


Conclusion: The free abelian group of rank three contains a trivial subgroup.

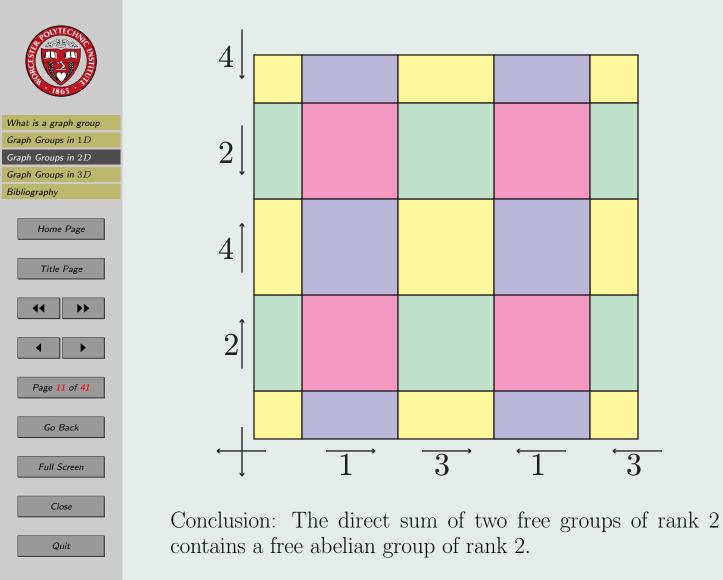
What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in $3D$
Ribliography

Γ 4-gon. 4D Cube





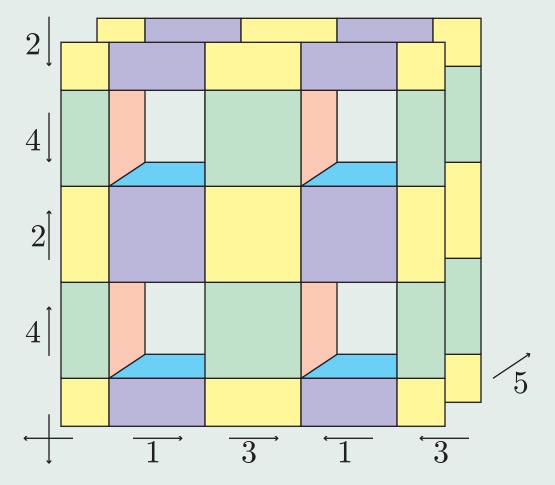
 $F(\Gamma) = \langle a, c \rangle \oplus \langle a, c \rangle$



What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in 3D
Bibliography

Home Page
Title Page
•• ••
Page 12 of 41
Go Back
Full Screen
Close
Quit

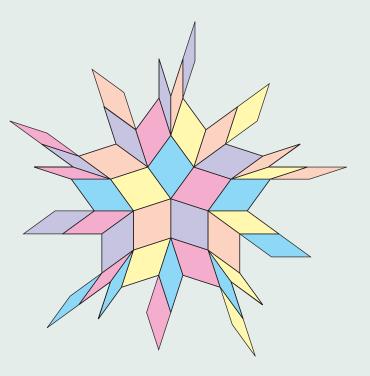
Γ 5-gon. 5D Cube



●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

Theorem (DSS 1990) [7] Let F_{Γ_n} be the graph group of the n-gon graph. F'_{Γ_n} contains a subgroup isomorphic to the fundamental group of the orientable surface of genus $1 + (n-4)2^{n-3}$.

Theorem (Crisp Wiest 2004) [1] All but finitely many surface groups embed in graph groups.



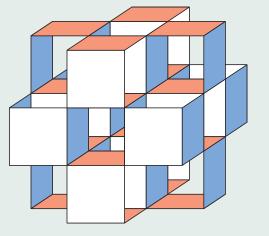
Home Page
Title Page
•• ••
Page 14 of 41
Go Back
Full Screen
Close

Quit

A *Commutator Map* is a map on a surface such that: Every face is a quadrilateral The oriented edges are colored such that the boundary of each quadrilateral is a commutator in the color labels If two colors form a commutator, then any two edges of those colors which are incident at a vertex are incident at a face.

Theorem

Every Eulerian graph embeds in a surface as a commutator map.



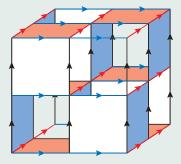
Home Page
Title Page
•• ••
Page 15 of 41
Go Back
Full Screen
Close

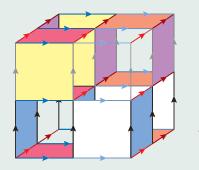
Quit

A *Commutator Map* is a map on a surface such that: Every face is a quadrilateral The oriented edges are colored such that the boundary of each quadrilateral is a commutator in the color labels If two colors form a commutator, then any two edges of those colors which are incident at a vertex are incident at a face.

Theorem

Every Eulerian graph embeds in a surface as a commutator map.





●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qu

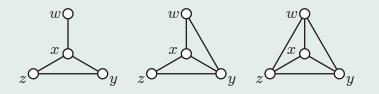
What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in $3D$
Pibliography

Home Page
Title Page
•• ••
Page <u>16</u> of <u>41</u>
Go Back
Full Screen
Close

4. Graph Groups in 3D

Theorem 3 (Droms-1983) [2] A graph group $G(\Gamma)$ is a 3-manifold group if and only if every connected component of Γ is either a tree or a triangle.

Necessity: (Jaco and Shalen) [5]A three-manifold group is coherent.



(Shalen) [8] If $\langle x \rangle \oplus X$ is a 3-manifold group, then X is a surface group.

(Hoare Karrass Solitar) [4] Every subgroup of infinite index in a surface group is free.

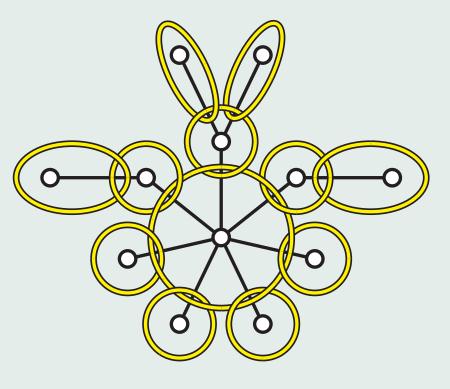
Bibliography

Quit

First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

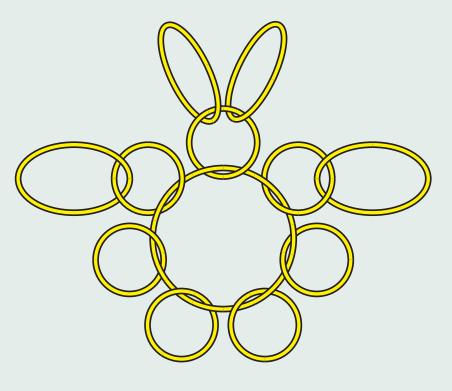
What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in $3D$
Bibliography

Home Page
Title Page
••
Page 18 of 41
Go Back
Full Screen
Close



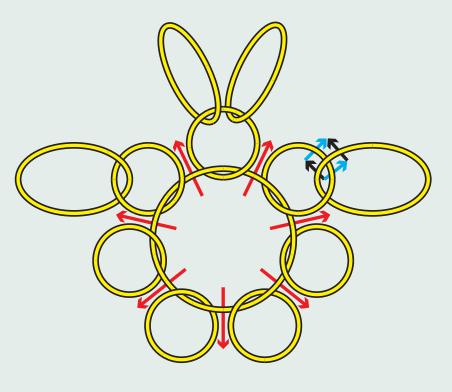
For those components which are trees

What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in $3D$
Bibliography



For those components which are trees

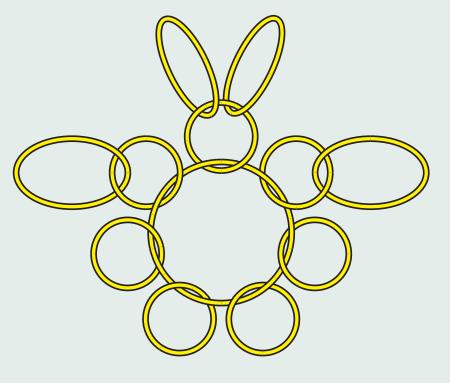
What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in $3D$
Bibliography



For those components which are trees

What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in $3D$
Bibliography

Home Page
Title Page
•• ••
Page 21 of 41
Go Back
Full Screen
Close



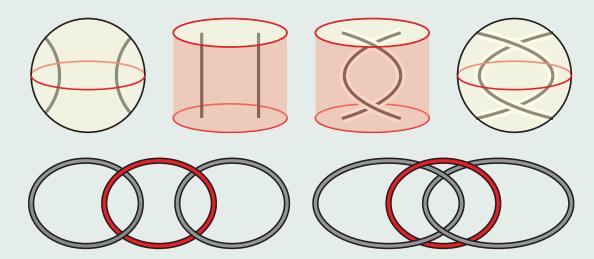
There are uncountably many 3-manifolds whose fundamental groups are graph groups.

What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in 3D
Bibliography

Home Page
Title Page
•• ••
Page 22 of 41
Go Back
Full Screen
Close

When is uncountable not enough?

Are there other links in S_3 whose groups are graph groups?

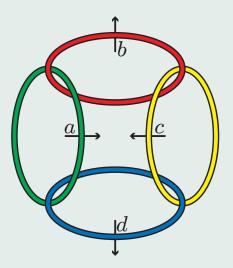


Dehn twist on circle d

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\$

$$\begin{array}{ll} ab=ba' & ba=ab'\\ bc=cb' & cb=bc'\\ cd=dc' & dc=cb'\\ da=ad' & ad=da' \end{array}$$

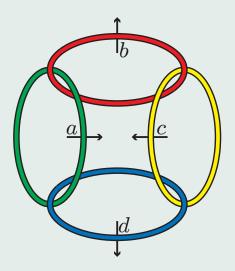
A graph group link group.



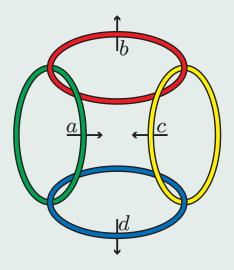
$$b^{-1}ab = d^{-1}ad c^{-1}bc = a^{-1}ba d^{-1}cd = b^{-1}cb a^{-1}da = c^{-1}dc$$

So both a and c commute with bd^{-1} . And both b and d commute with ca^{-1} .

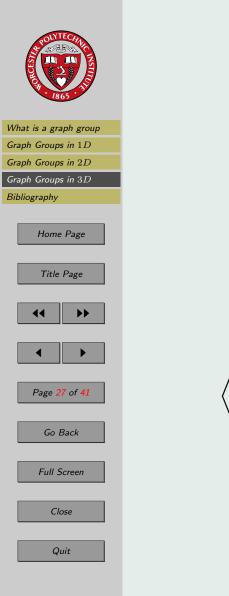
●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

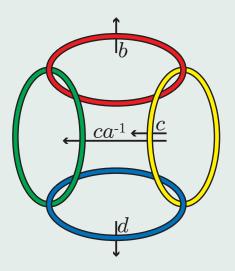


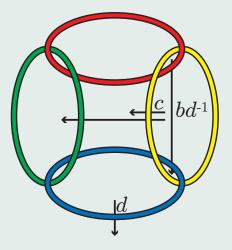
$$\begin{array}{c|c} a, b, c, d, & \begin{bmatrix} a, bd^{-1} \end{bmatrix} = 1, \begin{bmatrix} b, ca^{-1} \end{bmatrix} = 1, \\ [c, db^{-1}] = 1, \begin{bmatrix} d, ac^{-1} \end{bmatrix} = 1 \\ \begin{bmatrix} ac^{-1}, bd^{-1} \end{bmatrix} = 1 \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$



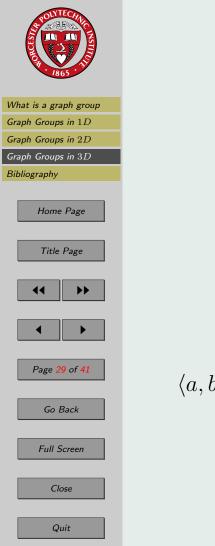
$$a, b, c, d, \left| \begin{array}{c} [a, bd^{-1}] = 1, & [b, ca^{-1}] = 1, \\ [c, db^{-1}] = 1, & [d, ac^{-1}] = 1 \end{array} \right| \\ [ac^{-1}, bd^{-1}] = 1 \\ a \\ bd^{-1} \\ c \\ c \\ d \end{array}$$

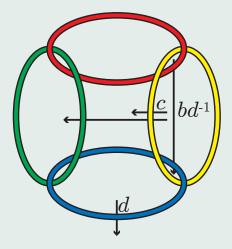






$$a, bd^{-1}, ca^{-1}, d, | \begin{bmatrix} a, bd^{-1} \end{bmatrix} = 1, \\ [ca^{-1}, db^{-1}] = 1, \\ [d, ac^{-1}] = 1 \end{bmatrix} > a$$

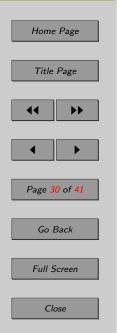


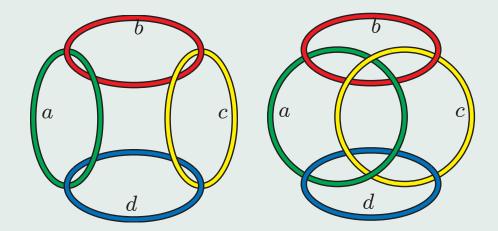


$$a, bd^{-1}, ca^{-1}, d, | [a, bd^{-1}] = 1, [ca^{-1}, db^{-1}] = 1, [d, ac^{-1}] = 1 \rangle$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

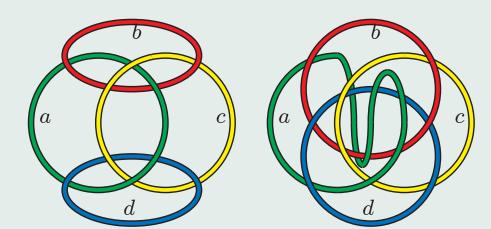
What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in $3D$
Bibliography





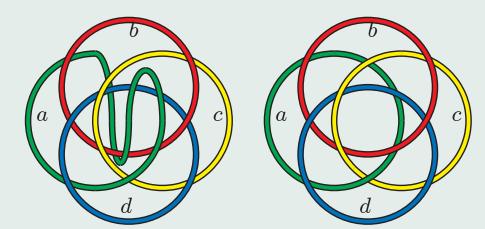
Dehn twist on circle d

What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in $3D$
Bibliography



Dehn twist on circle c.

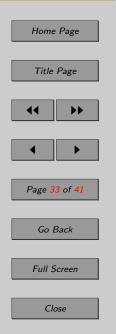
What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in $3D$
Bibliography

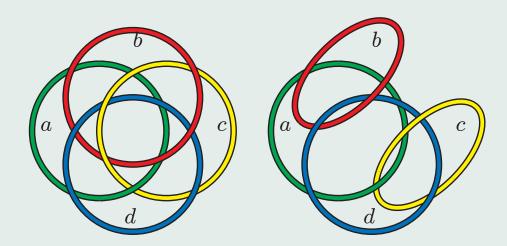


Isotope circle a.

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in $3D$
Bibliography

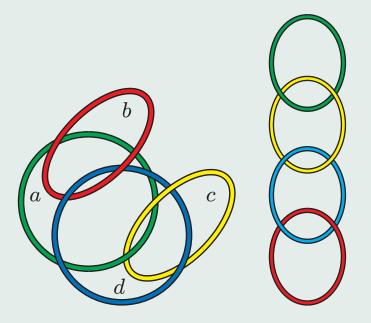




Dehn twist on circle d in opposite direction.

Home Page
Title Page
•• ••
Page 34 of 41
Go Back
Full Screen
Close

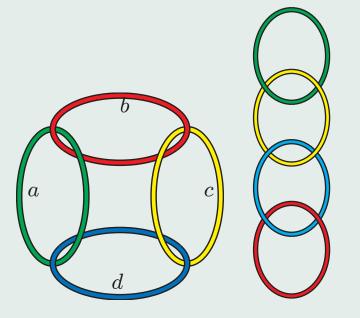
Quit



Pull taut for the result.
$$a - c - d - b$$

What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in $3D$
Bibliography

Home Page
Title Page
•• ••
Page 35 of 41
Go Back
Full Screen
Close

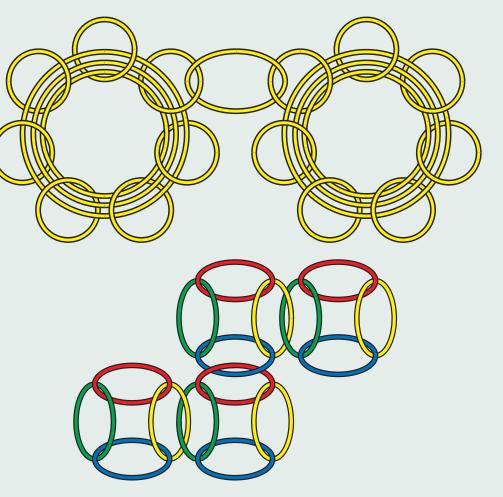


So these links have homeomorphic complements

What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in 3D
Bibliography

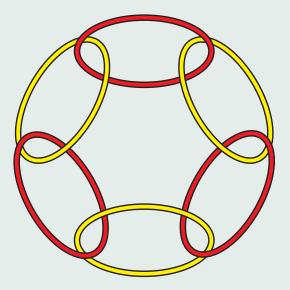
Home Page
Title Page
•• ••
Page 36 of 41
Go Back
Full Screen
Close

Which links of unknotted circles yield graph groups



What is a graph group	
Graph Groups in 1D	
Graph Groups in 2D	
Graph Groups in 3D	
Bibliography	
Home Page	
Title Page	
•• ••	
Page 37 of 41	
Go Back	
Full Screen	
Close	
Quit	

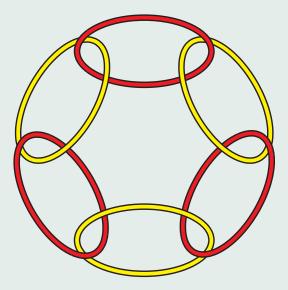
Fundamental group a graph group?



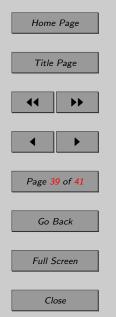
If so, what is the graph? It would have to have six vertices.

What is a graph group	
Graph Groups in 1D	
Graph Groups in $2D$	
Graph Groups in 3D	
Bibliography	
Home Page	
Title Page	
•• ••	
Page 38 of 41	
Go Back	
Full Screen	
Close	
Quit	

Fundamental group a graph group?



Theorem (Thurston 198?) 1982 [9] The complement of the six link anklet in S_3 has a hyperbolic structure.



Quit

Hyperbolic 3-manifold groups

Theorem 4 A graph group $G(\Gamma)$ which is a hyperbolic 3manifold group has no component which is not complete.

Theorem 5 $PSL(2, \mathbb{C})$ has no discrete subgroup isomorphic to $G(\circ - \circ - \circ)$.

$$\begin{bmatrix} 1 & \mu \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} \nu & 0 \\ 0 & \nu^{-1} \end{bmatrix}$$

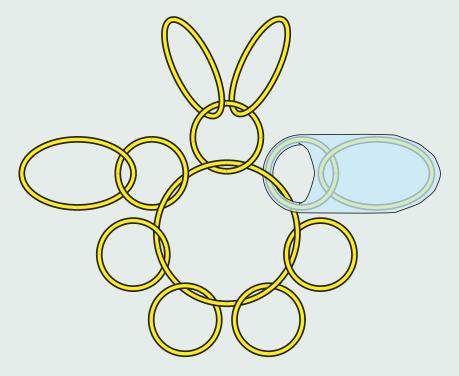
Theorem 6 The group of the six link anklet is not a graph group.

What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$
Graph Groups in $3D$
Bibliography

Home Page
Title Page
•• ••
Page 40 of 41
Go Back
Full Screen
Close

Geometric Structure of Graph Links

The an epsilon neighborhood of any link is *incompressible*.



The graph link manifolds which are *atoroidal* are L(a) - solid torus with geometry \mathbb{R}^3 L(a - b) - thickened torus with geometry \mathbb{R}^3 $L(a - b - c) - S^1 \times (\mathbb{R}^2 - \{p, q, r\})$ with geometry $\mathbb{R} \times \mathbb{H}$.

What is a graph group
Graph Groups in $1D$
Graph Groups in $2D$

Graph Groups in 3D	Graph	Groups	in	3L
--------------------	-------	--------	----	----

Bibliography

Home Page
Title Page
•• ••
Page 41 of 41
Go Back
Full Screen
Close

5. Bibliography

References

- [1] John Crisp and Bert Wiest. Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups. *Algebr. Geom. Topol.*, 4:439–472, 2004.
- [2] Carl Droms. Graph groups, coherence, and three-manifolds. J. Algebra, 106(2):484–489, 1987.
- [3] Carl Droms. Isomorphisms of graph groups. Proc. Amer. Math. Soc., 100(3):407–408, 1987.
- [4] A. Howard M. Hoare, Abraham Karrass, and Donald Solitar. Subgroups of infinite index in Fuchsian groups. *Math. Z.*, 125:59–69, 1972.
- [5] William Jaco and Peter B. Shalen. Seifert fibered spaces in 3-manifolds. In *Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977)*, pages 91–99. Academic Press, New York, 1979.
- [6] Michael R. Laurence. A generating set for the automorphism group of a graph group. J. London Math. Soc. (2), 52(2):318–334, 1995.
- [7] Herman Servatius, Carl Droms, and Brigitte Servatius. Surface subgroups of graph groups. Proc. Amer. Math. Soc., 106(3):573–578, 1989.
- [8] Peter B. Shalen. Representations of 3-manifold groups. In *Handbook of geometric topology*, pages 955–1044. North-Holland, Amsterdam, 2002.
- [9] William P. Thurston. Three-dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer. Math. Soc. (N.S.), 6(3):357–381, 1982.