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Delta-matroids and rigidity matroids

Kenneth Snelson ”Soft Landing”, Denver(1982)

Brigitte Servatius, Worcester Polytechnic Institute
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1. Rigidity of Bar and Joint
Frameworks

We want to consider the rigidity of a framework F = ((V,E),p)
in d-space with

� nodes corresponding to the vertices V ,

� length constraints corresponding to the edges E,

� a placement of the vertices into Euclidean space by p : V →
R|V |d.

Forms of rigidity:

� local

� global

� infinitesimal

� generic....

A framework is rigid if every placement q : V → Rd sufficiently
close to p and preserving the distances between the placements
of adjacent vertices, is related to p by a congruence of Rd.
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2. Generic Rigidity Matroids

Ground set: The edge setK of a (large enough) complete graph.
The rigidity matroid for a graph G = (V,E) is the restriction
to E.

� d=1: rigidity=connectivity.

� d=2: If E ⊆ K is independent, then |F | ≤ 2|V (F )| − 3,
for each nonempty subset F of E.

� d=3: ??

”Counting” matroids
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Graphic matroids

A matroid is graphic if it is isomorphic to the cycle matroid on
a graph G. Non-isomorphic graphs may have the same cycle
matroid, but 3-connected graphs are uniquely determined by
their cycle matroids.
M is co-graphic if M ∗ is graphic.
M is graphic as well as co-graphic iff G is planar. Map duality
(geometric duality) agrees with matroid duality.
If G(V,E) is planar and connected, its cycle matroid has rank
|V | − 1, its co-cycle matroid has rank |F | − 1, so |V | − 1 +
|F | − 1 = |E|.
The facial cycles generate the cycle space.
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Miracle in the Plane

Planar rigidity cycles dualize into rigidity cycles.

Theorem 1 Let C be a cycle in the generic 2-dimensional
rigidity matroid such that (V (C), C) is planar. Then the
edge set of the geometric dual of (V (C), C) is also a generic
cycle.
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Maxwell’s reciprocal figures, parallel re-drawings, Assur graphs.
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New rigidity results in dimension 3

Several recent papers characterize rigidity of graphs whose ver-
tices are constrained to move on a sphere, concentric spheres,
or concentric cylinders [5, 7, 6, 4, ?]
Geometric/algebraic methods are used.
Can we use just combinatorics?
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3. Combinatorial Maps

Tutte [8] defined maps axiomatically. If we have three fixed
point free permutations τ0, τ2, and V on a set Φ of flags such
that

A1 τ 2
0 = τ 2

2 = Id

A2 τ0τ2 = τ2τ0

A3 Vτ2 = τ2V−1

A4 {V iφ} ∩ {V iτ2φ} = ∅
A5 τ0, τ2 and τ0τ2 are fixed point free

A6 〈τ0, τ2,V〉 acts transitively on Φ

then we can define a graph G whose vertices are the orbits of Φ
under 〈τ2,V〉 and whose edges are the orbits of Φ under 〈τ0, τ2〉.
The orbits of 〈τ0, τ2〉 each have four elements and intersect either
one or two orbits of 〈τ2,V〉, defining the endpoints of the edge.
M(G, τ0, τ2,V) is a combinatorial map.
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Decomposition of the hexagonal prism into flags.
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Orbits under τ2τ0, τ2τ1 and τ0τ1.
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Flags at an edge, and at a vertex.
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4. The flag graph

BS(M) and Co(M).

A map is orientable if and only if its flag graph is bipartite.
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τ0 red
τ2 green
τ1 blue
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5. Vertex splitting and edge con-
traction

Vertex split/edge contraction.

Number of faces stays the same. Contraction of a loop is unde-
fined.
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6. Reduction to unitary maps

A map is called unitary if it has exactly one vertex and one
face. By a sequence of edge contractions one can reduce the
number of vertices of a map M , or the number of faces of M ∗.

The flags {x, τ0x, τ2x, Ex} of a unitary map are distributed
among the two disjoint cycles of V by

(x,A, Ex,B)(τ2B, τ0x, τ2A, τ2x)

or

(x,A, τ0x,B)(τ2B, Ex, τ2A, τ2x)

Crosscap

A crosscap is assembled if A or B is empty. Crosscaps may be
assembled by a sequence of vertex splits and edge contractions.
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7. Classification of Surfaces

Normal forms

Map projection and polygon models of canonical normal forms.

Theorem 2 Every closed surface has the topological type of
either

1. The sphere. (χ(S) = 2).

2. A connected sum of n tori. (χ(T n) = 2(n− 1)).

3. A connected sum of n projective planes. (χ(P n) = 2−n).
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8. ∆-matroids

Introduced by Bouchet as set systems satisfying the symmetric
exchange axiom
For F ′, F ′′ ∈ F , x ∈ F ′∆F ′′, there exists y ∈ F ′′∆F ′ such
that F ′∆{x, y} ∈ F .
Feasible sets need not be equicardinal.
In [2] Bouchet associates a ∆-matroid to a map on a topological
surface S by defining edge sets F feasible if S − cl(F ∪ F ∗) is
connected. This easily translates to connectivity properties of
the flag graph.



Rigidity of Bar . . .

Generic Rigidity . . .

Combinatorial Maps

The flag graph

Vertex splitting . . .

Reduction to . . .

Classification of . . .

∆-matroids

Home Page

Title Page

JJ II

J I

Page 18 of 27

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

For example consider K4 embedded on a torus.
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From each red-green square both edges of one color must be
deleted without destroying connectivity of the flag graph.



Rigidity of Bar . . .

Generic Rigidity . . .

Combinatorial Maps

The flag graph

Vertex splitting . . .

Reduction to . . .

Classification of . . .

∆-matroids

Home Page

Title Page

JJ II

J I

Page 21 of 27

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Theorem 3 Let D(M) be the ∆-matroid of a map M(G,S)
and let M ∗(G∗, S) be the dual map. Then

� D(M ∗) = D(M)∗;

� the lower matroid of D is the cycle matroid of G;

� the upper matroid of D is the co-cycle matroid of G∗;

� w(D) = 2− χ(S).
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Note that there are connections to 2-matroids and ribbon
graphs. A good reference for ribbon graphs is [3], see also [1].

e
f

g

A ribbon graph.
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K5 on the torus

, ,
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Another way to embed K5 on the torus

1 2 3 4 5 1 2 3 4 51 2 3 4 5

1 2 3 4 51 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

1 2 3 4 51 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5 1 2 3 4 51 2 3 4 5



Rigidity of Bar . . .

Generic Rigidity . . .

Combinatorial Maps

The flag graph

Vertex splitting . . .

Reduction to . . .

Classification of . . .

∆-matroids

Home Page

Title Page

JJ II

J I

Page 25 of 27

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

1 2 3 4 5 1

1 2 3 4 5 1

1 2 3 4 5 1

1 2 3 4 5 1

1 2 3 4 5 1

1 2 3 4 5 1

1 2 3 4 5 1

1 2 3 4 5 1

1

34

5

2
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Observations

� The upper and lower matroid of the ∆-matroid of a map on
the sphere are identical.

� The 2-dimensional generic rigidity matroid may be consid-
ered a Dilworth truncation of two connectivity matroids.

� For graphs embedded on other surfaces we may define a
rigidity matroid as (truncation) of two upper matroids of
the corresponding ∆-matroid.

To appear: Handbook of geometric constraint systems



Rigidity of Bar . . .

Generic Rigidity . . .

Combinatorial Maps

The flag graph

Vertex splitting . . .

Reduction to . . .

Classification of . . .

∆-matroids

Home Page

Title Page

JJ II

J I

Page 27 of 27

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

References

[1] Remi Cocou Avohou. Polynomial invariants for arbitrary rank D weakly-colored stranded graphs.
SIGMA Symmetry Integrability Geom. Methods Appl., 12:Paper No. 030, 23, 2016.
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