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1. Mirrors and Symmetry
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Two mirrored walls
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A glimpse of infinity - a repeating linear pattern
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Four mirrored walls
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A doubly periodic pattern with with four orientations.
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Mr. Pentagon looks at one of his chins.
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Mr. Pentagon looks at one of his chins.
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Mr. Pentagon looks himself in the eye. . .
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Does it always go through a corner?
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A room with 180◦ rotational views
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A room with 180◦ rotational views (how many orientations?)
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One of the walls inverts colors . . .
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One of the walls inverts colors . . . or is it two . . .
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So how many such colored patterns are there?



Mirrors and Symmetry

Geometry to Graphs

Connectivity

The Program

Bibliography

Home Page

Title Page

JJ II

J I

Page 20 of 71

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

So how many such colored patterns are there?
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So how many such colored patterns are there?
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So how many such colored patterns are there?
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So how many such colored patterns are there?
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17 plane crystallographic groups [Fedorov [3]]

46 two-colored crystallographic groups [Coxeter [1]]
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Spherical groups
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Application 1: Pattern counting

M. C. Escher [2, 8, 6] laboriously examined multitudes of
sketches to determine how many different patterns would
result by repeatedly translating a 2 × 2 square having its
four unit squares filled with copies of an asymmetric motif
in any of four aspects.
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The 1× 4 case: Escher revisited

1 bbbb

2 bbbq

3 bbbp

4 bbbd

5 bbqq

6 bbqp

7 bbqd

8 bbpq

9 bbpp

10 bbpd



Mirrors and Symmetry

Geometry to Graphs

Connectivity

The Program

Bibliography

Home Page

Title Page

JJ II

J I

Page 28 of 71

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

11 bbdq

12 bbdp

13 bbdd

14 bqbq

15 bqbp

16 bqbd

17 bqpd

18 bqdp

19 bpbp

20 bdbp

21 bdbd

22 bdqp

23 bdpq
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Summary [7, 8]

1. f (n) – A053656 in Sloan’s On-Line Encyclopedia of in-
teger sequences [15]

2. G(n) ≈ 2F (n)

3. G(n) ≈ 4n/(4n) (G(p) = d4n/(4n)e for n = p prime)

4. Symmetric motifs

5. Over/Under weave motifs

6. Multiple motifs
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Strip patterns

All frieze patterns may be realized in folding paper dolls [9]
and [4].
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Application 2: Cayley Graphs

Vertices: The orbit of any point in a fundamental region
Edges: Generators mapping to incident fundamental regions

Result: A symmetrically embedded Cayley graph.
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Analogous construction in the Euclidean plane
The Cayley graph of the 30− 60− 90 triangle group.
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Analogous construction on the torus
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A symmetric tiling - a choice of fundamental region.

Fundamental region tiling – Cayley graph of symmetry group
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Homework
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Application 3: Self–Duality

[13, 11, 10, 12, 14]

A self-dual polyhedron.

Add polarity to the Euclidian group.
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Self–dual tilings –
cmm B cm

.
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Self–dual tilings –
cmm B cm

.



Mirrors and Symmetry

Geometry to Graphs

Connectivity

The Program

Bibliography

Home Page

Title Page

JJ II

J I

Page 39 of 71

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit



Mirrors and Symmetry

Geometry to Graphs

Connectivity

The Program

Bibliography

Home Page

Title Page

JJ II

J I

Page 40 of 71

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit



Mirrors and Symmetry

Geometry to Graphs

Connectivity

The Program

Bibliography

Home Page

Title Page

JJ II

J I

Page 41 of 71

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit



Mirrors and Symmetry

Geometry to Graphs

Connectivity

The Program

Bibliography

Home Page

Title Page

JJ II

J I

Page 42 of 71

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

(Red,Green)

(Red,Blue)
(G,R,B)

(Blue,Green)

There are also three-color groups
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2. Geometry to Graphs

–To a geometer - Platonic Solids
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–To a topologist - Platonic Maps
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–To a graph theorist - Platonic Graphs
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How many automorphisms?
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How many automorphisms?
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How many automorphisms?
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Straightening Lemma

Theorem (H. Maschke)[5]

The automorphism group of a finite planar graph is isomor-
phic to one of the discrete groups of the sphere.

Straightening Lemma

Given a locally finite planar 3-connected graph, then it has
a drawing on either the sphere, the Euclidean plane or the
hyperbolic plane such that all its automorphism group is
realized by isometries. [14].
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Straightening Lemma

Theorem (Mashke)

The automorphism group of a finite planar graph is isomor-
phic to one of the discrete groups of the sphere [5].

Straightening Lemma

Given a locally finite planar 3-connected graph, then it has
a drawing on either the sphere, the Euclidean plane or the
hyperbolic plane such that all its automorphism group is
realized by isometries.
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Algorithm

1. Choose a connected fundamental region
you may need a barycentric subdivision first.

2. Record the intersection numbers at each vertex.
3. Assemble at a vertex regular n-gons.
4. Take the dual at the vertex
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Different choices of fundamental region give different
straightenings.
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Using the 4–3–3–4–3
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Using the 4–4–4–4
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Moral

We can study automorphisms of 3-connected planar graphs
via geometry:

Example: classifying self-dual graphs
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3. Connectivity

Maps are not enough

A self-dual graph with no corresponding self-dual map.
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The 3-Block Tree

For a 2-connected graph G, the cycle matroid of G is the
2-sum over the cycle matroids of the 3-blocks of G:

M(G) = M(G0)
⊕
e1

M(G1) . . .
⊕
ek

M(Gk)
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The Block-Cutpoint Tree

For any graph G, the cycle matroid of G is the direct sum
over the cycle matroids of the blocks of G:

M(G) =
∑

M(Gi)
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4. The Program

Program: Given a planar graph with whose automorphism
group has finitely many vertex orbits.

1. If 3-connected – embed and straighten so that the au-
tomorphisms are represented by isometries (euclidean,
spherical, or hyperbolic).

Apply geometric methods.

2. Else if two-connected – form the 3–block tree and use
the program on each block, and merge with data on the
automorphisms of the tree.

3. Else if connected – from the block-cutpoint tree and ap-
ply the program to each block, merging with the tree
automorphisms.

4. Else apply program to each connected component, and
merge with permutations of isomorphic components.
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