

Polygonal maps
Orientability
3D Realizability
Ribbon Embeddings
Bibliography
Home Page
Title Page
••
Page 1 of 22
Go Back
Full Screen
Close

The Cube and its Petrie Dual embedded in \mathbb{R}^3

Brigitte Servatius

October 2, 2010

Polygonal maps
Orientability
3D Realizability
Ribbon Embeddings
Bibliography

1. Polygonal maps

Start with a set of polygons.

Polygonal maps
Orientability
3D Realizability
Ribbon Embeddings
Bibliography

Consider them *oriented*

Assume: total # of edges is even.

- \exists a perfect matching of edges: m For each matched edge pair specify
 - + matched respecting edge orientation
 matched reversing edge orientation

 (m, \pm) is a *map* provided the resulting complex is connected.

Example

Polygonal maps

- Orientability 3D Realizability
- **Ribbon Embeddings**
- Bibliography

Home Page
Title Page
•• ••
Page 4 of 22
Go Back
Full Screen
Close

Quit

 $\mathfrak{M}(au_0, au_1, au_2)$

Idea Barycentric Subdivision

This information is conveniently collected in the flag graph

- Orientability 3D Realizability
- Ribbon Embeddings
- Bibliography

In [2] we find:

"The spirit of the present paper is probably best described by the desire to rid the theory of regular polyhedra of the psychologically motivated crutch of 'membranes' spanning the polygons used as building blocks."

Orientability 3D Realizability

Ribbon Embeddings

Bibliography

Home Page
Title Page
•• ••
Page 6 of 22
Go Back
Full Screen
Close

Quit

Map $\mathfrak{M} = (\tau_0, \tau_1, \tau_2)$ Dual Du $(\mathfrak{M}) = (\tau_2, \tau_1, \tau_0))$ Antipodal Dual A $(\mathfrak{M}) = (\tau_0, \tau_1, \tau_0 \tau_2))$ Petrie Dual Pe $(\mathfrak{M}) = (\tau_0 \tau_2, \tau_1, \tau_0))$

- Orientability
- 3D Realizability
- Ribbon Embeddings

Bibliography

2. Orientability

 $\langle \tau_1 \tau_2, \tau_2 \tau_0, \tau_0 \tau_1 \rangle = \langle \mathcal{V}, \mathcal{E}, \mathcal{F} \rangle$ has either one flag orbit \longrightarrow non-orientable map or two flag orbits \longrightarrow orientable map

Example

- Polygonal maps Orientability
- 3D Realizability
- Ribbon Embeddings

Bibliography

Home Page
Title Page
•• ••
Page 8 of 22
Go Back
Full Screen
Close
Quit

a)

Examples of Petrie duals - Tetrahedron

a) The tetrahedron with superimposed flag graph, with the flag matchings τ_0 in blue, τ_1 in yellow and τ_2 in red. b) The flag graph for the Petrie Dual.

The three Petrie quadrilaterals,

- Polygonal maps Orientability
- 3D Realizability
- Ribbon Embeddings
- Bibliography

Home Page
Title Page
•• ••
•
Page 9 of 22
Go Back
Full Screen
Close

a)

Examples of Petrie duals - Tetrahedron

a) The tetrahedron with superimposed flag graph, with the flag matchings τ_0 in blue, τ_1 in yellow and τ_2 in red. b) The flag graph for the Petrie Dual.

A hexagon with opposite sides identified with a twist – nonorientable. (projective plane)

Polygonal maps
Orientability
3D Realizability
Ribbon Embeddings
Bibliography

Home Page
Title Page

Close

Quit

Examples of Petrie duals - Cube

The cube has four hexagonal Petrie cycles

Four Petrie hexagons

Polygonal maps
Orientability
3D Realizability
Ribbon Embeddings
Bibliography

Home Page

Title Page
•• ••
•
Page 11 of 22
Go Back
Full Screen
Close
Quit

Examples of Petrie duals - Cube

The cube has four hexagonal Petrie cycles

Four Petrie hexagons arranged as the upper and lower half of a torus. which combine in pairs to form two annuli, which in turn join to form a torus – orientable.

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

Polygonal maps
Orientebility

- 3D Realizability
- Ribbon Embeddings

Bibliography

Home Page
Title Page
•• ••
Page <u>12</u> of <u>22</u>
Go Back
Full Screen
Close

Quit

Tetrahedron – Petrie dual not orientable

Cube – Petrie dual orientable

Theorem

Let $\mathfrak{M}(\tau_0, \tau_1, \tau_2)$ be an orientable map. Pe(\mathfrak{M}) is orientable if and only if $G(\mathcal{V}, \mathcal{E})$ is bipartite.

Theorem

Let $\mathfrak{M}(\tau_0, \tau_1, \tau_2)$ be an non-orientable map. Pe(\mathfrak{M}) is non-orientable if $G(\mathcal{V}, \mathcal{E})$ is bipartite.

The graph of a self-Petrie orientable map must be bipartite.

The graph of a self-Petrie non-orientable map need not be bipartite.

Polygonal maps
Orientability
3D Realizability
Ribbon Embeddings
Bibliography
Home Page

3. 3D Realizability

 \mathfrak{M} and $\mathrm{Du}(\mathfrak{M})$ can be drawn on the same surface in a nice way. There is a 3D representation in the orientable case.

 ${\mathfrak M}$ and ${\rm Pe}({\mathfrak M})$ describe the same graph on two different surfaces.

In the orientable case, can we find two surfaces in 3D such that their intersection is their common graph?

Polygonal maps Orientability

3D Realizability

Ribbon Embeddings

Bibliography

Quit

Example: Cube graph

Fact: In any 3D representation of $Pe(\mathfrak{M})$ at least one pair of quadrilaterals is linked.

Polygonal maps
Orientability
3D Realizability
Ribbon Embeddings
Bibliography
Home Page
Title Page
••
Page 15 of 22
Go Back
Full Screen
Close

A flat torus in the plane with 4 hexagons.

Polygonal maps Orientability 3D Realizability

Ribbon Embeddings

Rih	ligara	nhy
DIDI	iugra	pily

A framing of the torus in 3D

A

Q

C

A

- Orientability 3D Realizability
- Ribbon Embeddings
- Bibliography

Home Page
Title Page
4
Page 17 of 22
Go Back
Full Screen
Close

Quit

Other Framings

Polygonal maps
Orientability
3D Realizability
Ribbon Embeddings
Bibliography
Home Page
Title Page
Page 18 of 22
Go Back
Full Screen
Close
Quit

Polygonal maps
Orientability
3D Realizability
Ribbon Embeddings
Bibliography

Home Page

Title Page
•• >>
Page 19 of 22
Go Back
Full Screen
Close

Quit

4. Ribbon Embeddings

Example: Cube graph

Question: Is there at least a ribbon complex? The cube graph with ribbons sewn on for each four cycle and each Petrie six cycle?

Answer: No (by studying the labeled graph [1] associated to the ribbon complex.)

Polygonal maps
Orientability
3D Realizability
Ribbon Embeddings

Bibliography

Home Page
Title Page
•• ••
Page 20 of 22
Go Back
Full Screen
Close

Quit

For self-Petrie-dual maps it is possible to have ribbon complexes in \mathbb{R}^3

in fact

These examples are realizable as intersections of 2 spheres or two tori respectively

Non-orientable case: Example – Klein Bottle Ribbon Complex? Yes!

Polygonal maps
Orientability
3D Realizability

Ribbon	Embedding

Bibliography

And the moral is:

If we have a 3D representation of a graph drawing on a surface, and then forget about the membranes in the Grünbaum spirit, we cam still, from the existence of linked cycles exclude some surfaces by looking just at the skeleton.

- Orientability
- 3D Realizability
- Ribbon Embeddings

Bibliography

Home Page	
Title Page	
•	
•	
Page 22 of 22	
Go Back	
Full Screen	

Close

Quit

5. Bibliography

References

- Dan Archdeacon, C. Paul Bonnington, R. Bruce Richter, and Jozef Širáň. Sewing ribbons on graphs in space. J. Combin. Theory Ser. B, 86(1):1–26, 2002.
- [2] Branko Grünbaum. Regular polyhedra—old and new. Aequationes Math., 16(1-2):1–20, 1977.