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On configuration spaces of linkages

Brigitte Servatius
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1. Introduction

framework (in m-space)

a triple (V,E,−→p ),

(V,E) is a graph

−→p : V −→ Rm
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globally rigid framework

all solutions to the system of quadratic equations obtained from
requiring all edge lengths to be fixed, with the coordinates of
the vertices as variables, correspond to congruent frameworks

rigid framework

if all solutions to the corresponding system in some neighbor-
hood of the original solution (as a point in mn-space) come
from congruent frameworks.
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generic framework

all frameworks corresponding to points in a neighborhood of
P = −→p (V ) in Rnm are rigid or not rigid as is (V,E,−→p ).

generic pointset

A set of points P in m-space is said to be generic if each frame-
work (V,E,−→p ) with −→p (V ) = P is generic.
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Different notions of rigidity.
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Rigidity – Non rigid graphs have a motion.
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Non-infinitesimally rigid graphs have initial velocity candidates.
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Generic rigidity is a property of the graph,
not the embedding.
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Generic rigidity of G(V,E) is characterized in R2 by Laman’s
Theorem ∃F ⊆ E.

|F | = 2|V (F )| − 3

|F ′| ≤ 2|V (F ′)| − 3 ∀ F ′ ⊆ F
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rigid components

The maximal rigid subgraphs of G

– The rigid components partition E.

–M(G) is the direct sum over its restrictions on the rigid com-
ponents.

The following theorem is equivalent to Laman’s Theorem, it
uses the rank function ofM rather than independence to char-
acterize rigidity.

Theorem 1 [11] Let G = (V,E) be a graph. Then G
is rigid if and only if for all families of induced sub-
graphs {Gi = (Vi, Ei)}mi=1 such that E = ∪m

i=1Ei we have∑m
i=1(2|Vi| − 3) ≥ 2|V | − 3.
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redundantly rigid graph G(V,E)

G(V,E − e) is rigid for all e ∈ E
i.e. the removal of a single edge e from the rigid graph G does
not destroy rigidity.

Redundant rigidity is a key to characterize global rigidity.

Theorem 2 [5] Let G be a graph. Then G is globally rigid if
and only if G is a complete graph on at most three vertices,
or G is both 3-connected and redundantly rigid.
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2. Vertex transitive graphs

Theorem 3 A four-regular vertex transitive graph is gener-
ically rigid in the plane if and only if it contains no subgraph
isomorphic to K4, or is K5 or one of the graphs in the fol-
lowing figure.
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K4£K2
a) b)

Vertex transitive rigid graphs containing K4.
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Theorem 4 Let G be a vertex transitive non-rigid graph.
Then G is k-regular with k ≤ 6, and contracting the non-
trivial rigid components of G produces a vertex transitive
graph of regularity at most 5.



Introduction

Vertex transitive . . .

Example

Example

Highly connected . . .

Random graphs

Configuration Spaces

Four Bar Mechanism

Extensions of . . .

Open problems

Home Page

Title Page

JJ II

J I

Page 15 of 72

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Theorem 5 Let G be a connected k-regular vertex transi-
tive graph on n vertices. Then G is not rigid if and only if
either:
(a) k = 2 and n ≥ 4.
(b) k = 3 and n ≥ 8.
(c) k = 4 and G has a factor consisting of s disjoint copies
of K4 where s ≥ 4
(d) k = 5 and G has a factor consisting of t disjoint copies
of K5 where t ≥ 8.
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Cd

D

e

E

f

F

Two embeddings which are rigid, but neither infinitesimally
rigid nor globally rigid.
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d
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Two embeddings which are rigid and infinitesimally rigid but
not globally rigid.
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Two embeddings which are rigid, but not globally rigid.
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We observe that for a rigid G which is not redundantly rigid,
M(G) is not connected. It is in fact the direct sum over the
maximal redundantly rigid subgraphs (or singleton edges). The
arguments in the preceding proofs are unaltered if we replace
rigid components by redundantly rigid subgraphs and we obtain
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Theorem 6 A vertex transitive rigid graph is also globally
rigid unless it has a factor consisting of 3 copies of K4 or
6 copies of K5.
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3. Example
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4. Example
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5. Highly connected graphs

Let G be a graph and k be a positive integer. The graph G is
k-connected if for all pairs of subgraphs G1, G2 of G such that
G = G1∪G2, |V (G1)−V (G2)| ≥ 1 and |V (G2)−V (G1)| ≥ 1,
we have |V (G1)∩V (G2)| ≥ k. Lovász and Yemini [11] showed
that every 6-connected graph G is rigid. Planar graphs are
at most 5-connected and one might wonder if the connectivity
requirement can be lowered in order to imply rigidity of a planar
graph. However, the following figure shows a 5connected planar
nonrigid graph. The rigidity properties are easily checked using
Theorem 1.
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A planar 5-connected non-rigid graph.
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However,Lovász and Yemini [11] note that their proof technique
will show that G−{e1, e2, e3} is rigid for all e1, e2, e3 ∈ E, and
hence that G is redundantly rigid. This result was combined
with Theorem 2 in [5] to deduce

Theorem 7 Every (essentially) 6-connected graph is glob-
ally rigid.
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An even weaker connectivity condition is sufficient to imply that
4-regular graphs are globally rigid. A graph G = (V,E) is said
to be cyclically k-edge-connected if for all X ⊆ V such that
G[X ] and G[V − X ] both contain cycles, we have at least k
edges from X to V −X .

Theorem 8 Let G = (V,E) be a cyclically 5-edge-connected
4-regular graph. Then G is globally rigid.
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6. Random graphs

Let Gn,d denote the probability space of all d-regular graphs on
n vertices with the uniform probability distribution. A sequence
of graph properties An holds asymptotically almost surely, or
a.a.s. for short, in Gn,d if limn→∞ PrGn,d

(An) = 1. Graphs in
Gn,d are known to be a.a.s. highly connected. It was shown by
Bollobás [1] and Wormald [15] that if G ∈ Gn,d for any fixed
d ≥ 3, then G is a.a.s. d-connected. This result was extended
to all 3 ≤ d ≤ n − 4 by Cooper et al. [3] and Krivelevich et
al. [8]. Stronger results hold if we discount ‘trivial’ cutsets. In
[16], Wormald shows that if G ∈ Gn,d for any fixed d ≥ 3, then
G5 is a.a.s. cyclically (3d − 6)-edge-connected. Together with
Theorem 8, this immediately gives:
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Theorem 9 If G ∈ Gn,4 then G is a.a.s. globally rigid.

In fact this result holds for all d ≥ 4.

Theorem 10 If G ∈ Gn,d and d ≥ 4 then G is a.a.s. glob-
ally rigid.
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Theorem 11 Let G ∈ G(n, p), where p = (log n +
k log log n + w(n))/n, and limn→∞w(n) =∞.
(a) If k = 2 then G is a.a.s. rigid.
(b) If k = 3 then G is a.a.s. globally rigid.

The bounds on p given in Theorem 11 are best possible since if
G ∈ G(n, p) and p = (log n+k log log n+c)/n for any constant
c, then G does not a.a.s. have minimum degree at least k, see
[2].
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Let Geom(n, r) denote the probability space of all graphs on
n vertices in which the vertices are distributed uniformly at
random in the unit square and each pair of vertices of distance
at most r are joined by an edge. Suppose G ∈ Geom(n, r). Li,
Wan and Wang [10] have shown that if nπr2 = log n + (2k −
3) log log n+w(n) for k ≥ 2 a fixed integer and limn→∞w(n) =
∞, then G is a.a.s. k-connected. As noted by Eren et al. [4],
this result can be combined with Theorem 7 to deduce that
if nπr2 = log n + 9 log log n + w(n) then G is a.a.s. globally
rigid. On the other hand, it is also shown in [10] that if nπr2 =
log n+(k−1) log log n+c for any constant c, thenG is not a.a.s.
k-connected. It is still conceivable, however, that if nπr2 =
log n+log log n+w(n) then G is a.a.s. rigid, and that if nπr2 =
log n + 2 log log n + w(n) then G is a.a.s. globally rigid.
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7. Configuration Spaces

Configuration Space

Parameter Space

Moduli Space
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8. Four Bar Mechanism

Normalize: Sum of the bar lengths is 12.

Cyclically order by length.

Linkage encoded by (a, b, c, d), with a ≤ b ≤ c ≤ d.
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Normalize: Sum of the bar lengths is 12.
Cyclically order by length.
Linkage encoded by (a, b, c, d), with a ≤ b ≤ c ≤ d.

(0,4,4,4)

(0,0,0,12)

(3,3,3,3)

(0,0,6,6)
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Consider the mechanism as two arms joining X and Y :

Normalize so that X and Y line on a horizontal line with Y to
the right of X .

da arm

X

d a

bc

Y

cb arm

max(d− a, c− b) ≤ XY ≤ min(d + a, c + b)

If c− b ≤ d− a ≤ c+ b then the mechanism is realizable with
the da arm fully closed.

X d a

bc

Y

Otherwise d− a > c + b, or d > a + b + c and the mechanism
not is realizable at all.
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Condition of Completion:

a + b + c ≥ d
If a + b + c > d linkage unconstructible in Euclidean space -
Configuration Space empty - Dopey (Simplet)
If a + b + c = d linkage uniquely constructible. It is rigid,
and takes stress - Configuration Space a single point - Grumpy
(Grincheux)

(0,3,3,6)

(2,2,2,6)

(0,0,0,12)

(0,0,6,6)

dopey

grumpy
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If d < a + b + c then the configuration space is more than a
point

X

d a

bc

Y

and

max(d− a, c− b) ≤ XY ≤ min(d + a, c + b).

From the normalization, max(d− a, c− b) = d− a.
So we have three cases

min(d + a, c + b) = c + b < d + a - The cb arm opens fully

min(d + a, c + b) = d + a < c + b - The da arm opens fully

c + b = d + a - Both arms open fully
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Sleepy: (Dormeur)

d + a > b + c
In a Sleepy mechanism the da arm cannot fully open.
The configuration space is S1. There are no choices. You can
traverse the whole configuration space while asleep.

Example(2, 2, 3, 5) - The endpoints of the longest-shortest sub-
linkage are shown in red on a horizontal line with the endpoint
of the shorter rod to the right.
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A sleepy mechanism

No bar makes a full turn.

There is a motion connecting the framework and its mirror im-
age.
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Bashful: (Timide)

d + a < b + c. The cb arm cannot fully open.
But, the da arm has its full range of motion, (Grashof) but the
cb arm is forced to lie on one side of the line XY .
Configuration Space: The disjoint union of two circles. The
mechanism cannot achieve its full potential.

Example: (1, 3, 4, 4)
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A Bashful Mechanism

The smallest bar makes a full turn

The there is no motion from the framework to its mirror image.
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Sneezy: (Atchoum)

d + a = b + c
The da and the cb arm can simultaneously fully open.
Configuration Space: The one point union of two circles. If
you sneeze at the singular point then you may pop over to
the other S1.

Example: (1, 3, 3, 5)

Note: Also require d− a > c− b
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The shortest arm makes two full turns to traverse the space.

The configuration space is projected onto the y-coordinates of
the middle points.
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Happy: (Joyeaux)

d + a = b + c d− a = c− b (d = c, a = b)
The da and the cb arm can simultaneously fully open, and they
can also fully close
Configuration Space: The two point union of two circles,
much more fun to play with.

Example: (1, 1, 5, 5)

Note: Also require b < c
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A happy mechanism

The shortest arm makes two full turns to traverse the space.

The configuration space is projected onto the y-coordinates of
the middle points.
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Doc: (Prof)

a = b = c = d
The da and the cb arm can simultaneously fully open, and they
can also fully close, and X and Y can merge, at which point
the arms can move independently.
Configuration Space: A one point ring of three circles. The
most complex.

Example: (3, 3, 3, 3)
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A doc mechanism

Each colored point on the configuration space correspond to the
conformation of the mechanism of the same color.
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8.1. Decomposition by configuration type

The Grumpy mechanisms are the boundary between the Dopey
and Sleepy mechanisms.

The Sneezy and Happy mechanisms together with the Doc
mechanisms form the boundary between the Sleepy and Bashful
mechanisms.

(0,4,4,4)

(0,3,3,6)

(2,2,2,6)

(0,0,0,12)

doc (3,3,3,3)

(0,0,6,6)

bashful

sleepy

dopey

grumpy

h
ap

p
y

sneezy
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8.2. General n-gon (Farber et al.)

The Configuration space of an n-gon in the plane is determined
by the lattice of short subsets of the edge lengths.

The problem for a general graph in the plane is open.
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8.3. Dopey is not obvious
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8.4. Coupler Curves
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9. Extensions of Frameworks

� 0-extensions and 1-extensions of generically rigid graphs are
generically rigid.

� For every infinitesimally rigid graph, and every pair of ver-
tices, almost all 0-extensions are infinitesimally rigid.

� For every infinitesimally rigid graph, and every vertex edge
pair, almost all 1-extensions are infinitesimally rigid.
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Theorem 12 [7] Given any generic mechanism containing
an edge (a, b) and a vertex c whose motion c(t) is non-
circular and has non-trivial winding number about a, there
exists a generic Henneberg-1 move at b such that every Hen-
neberg 2 move, generic or not, involving (a, b) and c re-
stricts the motion of c.
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10. Open problems

� Delete 4 edges at random from a random 4-regular graph.
What is the expected number of rigid components?

� Are 6-regular random graphs rigid in 3-space?

� Describe the diffeomorphism types of the cube graph in the
plane.

� Are random d-regular graphs unit distance graphs?

� Is the configuration space of a linkage most complex if all
edge lengths are the same?
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