

	cal		

Combinatorial . . .

Realization 2d Zeolites

Finite Zeolites

The Layer . . .

Holes in Zeolites

Motions

A geometric . . .

Vertex transitive . .

Open Problems

Home Page

Title Page

Page 1 of <mark>68</mark>

Go Back

Full Screen

Quit

Close

From combinatorial zeolites to geometric realizations

Brigitte Servatius — WPI

Chemical Zeolites
Combinatorial
Realization
2d Zeolites
Finite Zeolites
The Layer
Holes in Zeolites
Motions
A geometric
Vertex transitive
Open Problems
Home Page

Title Page

Page 2 of 68

Go Back

Full Screen

Close

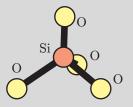
Quit

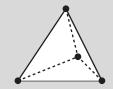
●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

- Chemical Zeolites
- Combinatorial . .
- Realization
- 2d Zeolites Finite Zeolites
- The Layer...
- Holes in Zeolites
- Motions
- A geometric . . .
- Vertex transitive . .
- Open Problems

Home Pag	e
Title Page	е

Go Back

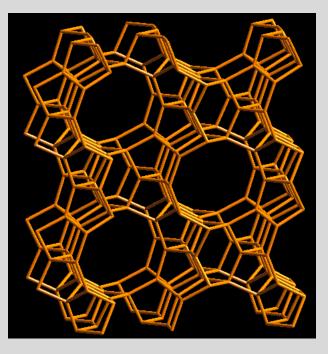

Full Screen


Close

Quit

1. Chemical Zeolites

- crystalline solid
- units: Si + 4O


• two covalent bonds per oxygen

- Chemical Zeolites Combinatorial... Realization
- 2d Zeolites
- Finite Zeolites
- The Layer...
- Holes in Zeolites
- Motions
- A geometric . . .
- Vertex transitive . . .
- Open Problems
- Home Page
- Title Page
- ••

 •
 - Page <mark>4</mark> of <mark>68</mark>
 - Go Back
 - Full Screen
 - Close

Quit

- naturally occurring
- \bullet synthesized
- theoretical
- Used as microfilters.

Chemical Zeolites
Combinatorial
Realization
2d Zeolites
Finite Zeolites
The Laver

La	0	in	Zaa	litar

- Motions
- A geometric . . .
- Vertex transitive . .

```
Open Problems
```


Page <mark>5</mark> of <mark>68</mark>

Go Back

Full Screen

Close

2. Combinatorial Zeolites

Combinatorial d-Dimensional Zeolite

- \bullet A connected complex of corner sharing d-dimensional simplices
- At each corner there are exactly two distinct simplices
- Two corner sharing simplices intersect in exactly one vertex.

body-pin graph

Vertices: simplices (silicon) Edges: bonds (oxygen) There is a one-to-one correspondence between combinatorial d-dimensional zeolites and d-regular body-pin graphs.

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric.... Vertex transitive... Open Problems

Full Screen

Close

Quit

Graph of a Combinatorial Zeolite

is obtained by replacing each d-dimensional simplex with K_{d+1} .

The graph of the zeolite is the line graph of the Body-Pin graph.

Whitney

[9](1932) proved that connected graphs X on at least 5 vertices are strongly reconstructible from their line graphs L(X). Moreover, $Aut(X) \cong Aut(L(X))$.

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric... Vertex transitive... Open Problems

Home Page
Title Page

Page 7 of <mark>68</mark>

Go Back

Full Screen

Close

Quit

3. Realization

A realization of a *d*-dimensional zeolite

A placement (embedding) of the vertices of the *d*-dimensional complex in \mathbb{R}^d .

Equivalently a placement (embedding) of the vertices of the line graph of the body-pin graph.

unit-distance realization

A realization where all edges join vertices distance 1 apart in \mathbb{R}^d .

non-interpenetrating realization

A realization where simplices are disjoint except at joined vertices.

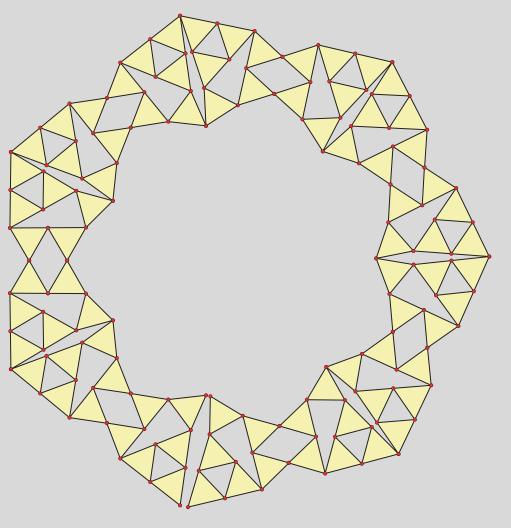
Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites

Motions

A geometric . . .

Vertex transitive...

Open Problems


Go Back

Full Screen

Close

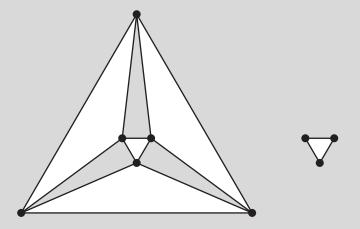
Quit

The typical situation: Not unit distance realizable.

4.

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric... Vertex transitive.

Full Screen


Close

Quit

2d Zeolites

Smallest 2d zeolite is the line graph of K_4 : The graph of the octahedron with four (edge disjoint) faces. For body-pin graphs on more than 4 vertices, the zeolite can be

recovered uniquely from the line-graph.

A finite 3-D symmetric example:

Chemical Zeolites Combinatorial... Realization

2d Zeolites

Finite Zeolites

The Layer...

Holes in Zeolites

Motions

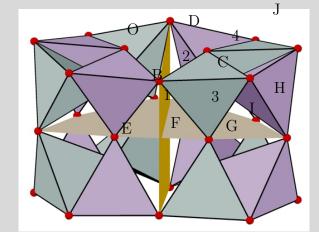
A geometric . . .

Vertex transitive . .

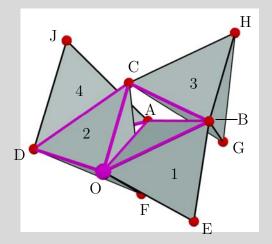
Open Problems

Home Page

Title Page


Page **10** of <mark>68</mark>

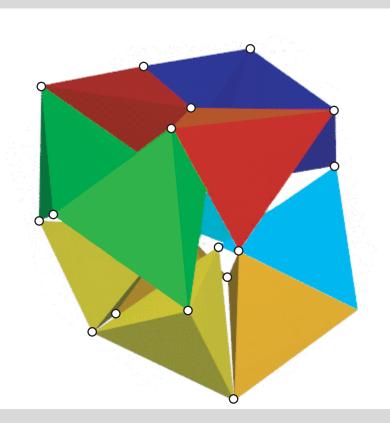
Go Back


Full Screen

Close

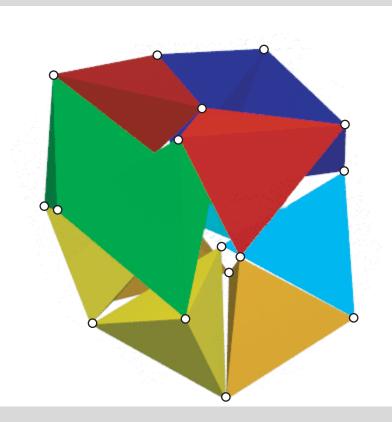
Quit

Model with its two planes of symmetry


●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

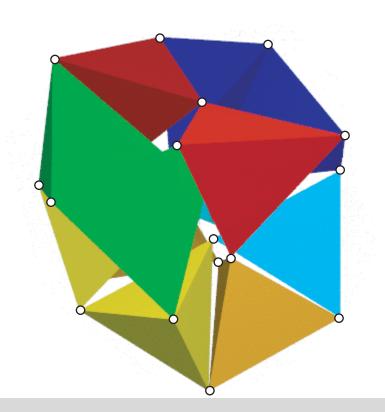
Chemical Zeolites Combinatorial . . . Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric . . . Vertex transitive . . **Open Problems** Home Page Title Page •• Page **11** of <mark>68</mark> Go Back Full Screen

Close


Quit

Chemical Zeolites Combinatorial . . . Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric . . . Vertex transitive... **Open Problems** Home Page Title Page •• Page **12** of <mark>68</mark> Go Back Full Screen Close

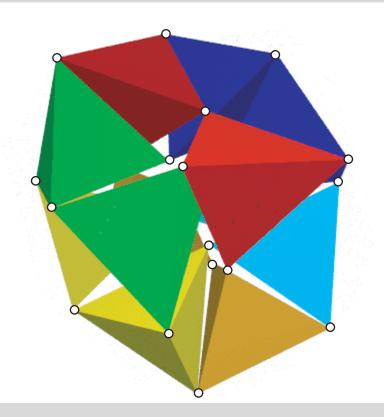
Quit



Chemical Zeolites Combinatorial . . . Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric . . . Vertex transitive . . **Open Problems** Home Page Title Page •• Page **13** of <mark>68</mark> Go Back Full Screen

Close

Quit



Chemical Zeolites Combinatorial . . . Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric . . . Vertex transitive . . **Open Problems** Home Page Title Page •• Page **14** of **68** Go Back

Full Screen

Close

Quit

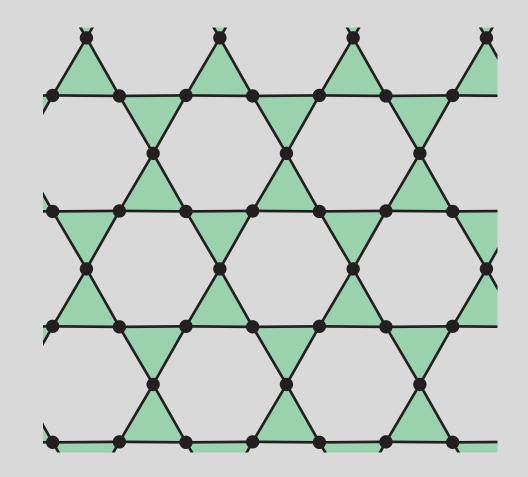
Chemical Zeolites Combinatorial Realization 2d Zeolites Finite Zeolites Finite Zeolites The Layer Holes in Zeolites Motions A geometric

Vertex transitive . .

Open Problems

Home Page Title Page

Page **15** of **68**


Go Back

Full Screen

Close

Quit

It is just as easy to construct infinite symmetric examples:

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric... Vertex transitive.. Open Problems

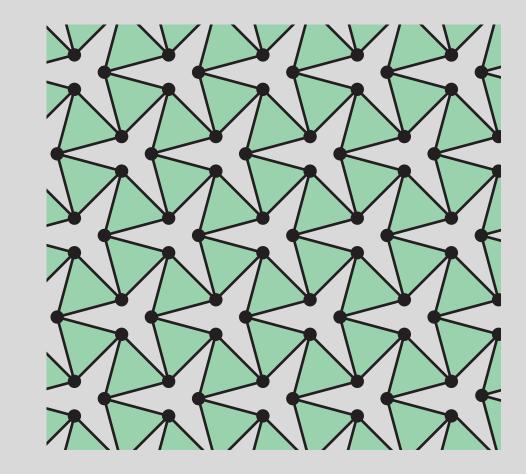
Home Page

Title Page

Page **16** of **68**

Go Back

Full Screen


Close

44

◀

••

Showing a different symmetry

Quit

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric...

Vertex transitive... Open Problems

Home Page

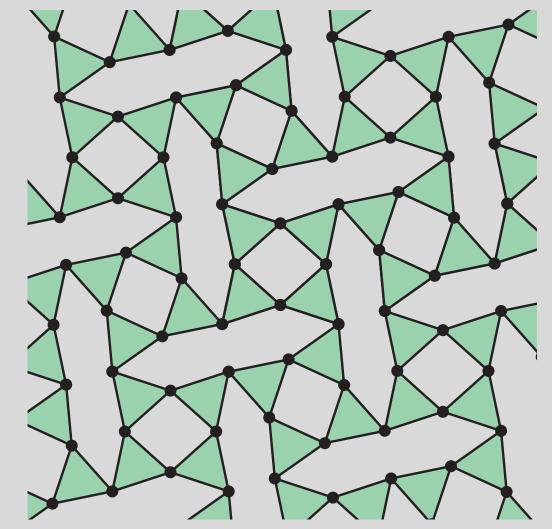
Title Page

Page 17 of 68

Go Back

Full Screen

Close


Quit

••

◀

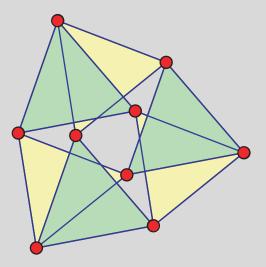
••

▶

Chemical Zeolites
Combinatorial ...
Realization
2d Zeolites
Finite Zeolites
The Layer ...
Holes in Zeolites
Motions
A geometric
Open Problems
Home Page
Title Page

Page 18 of 68

Go Back


Full Screen

Close

Quit

5. Finite Zeolites

Body pin graph: $K_{3,3}$. Since the body pin graph is not planar, the resulting zeolite cannot be planar. Its underlying graph is generically globally rigid. However, it has a unit distance realization in the plane which is a mechanism.

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer...

Holes in Zeolites

Motions

A geometric . . .

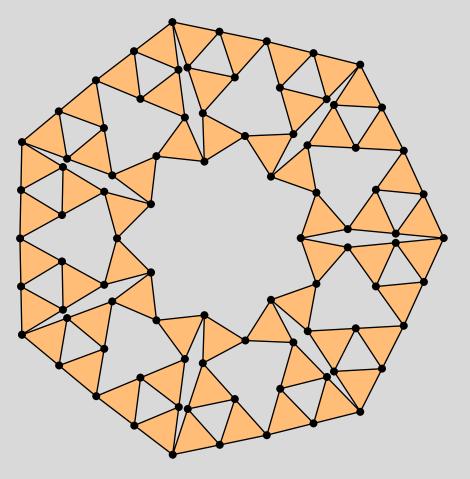
Vertex transitive . .

Open Problems

Home Page

Title Page

Page **19** of **68**


Go Back

Full Screen

Close

Quit

Harborth's Example [4, 3]

Chemical Zeolites

Combinatorial . . .

Realization

2d Zeolites

Finite Zeolites

The Layer...

Holes in Zeolites

Motions

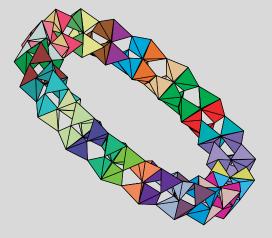
A geometric . . .

Vertex transitive . . .

Open Problems

Home Page

Title Page


Page <mark>20</mark> of <mark>68</mark>

Go Back

Full Screen

Close

Quit

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

Chemical Zeolites Combinatorial... Realization 2d Zeolites

Finite Zeolites

The Layer...

Holes in Zeolites

Motions

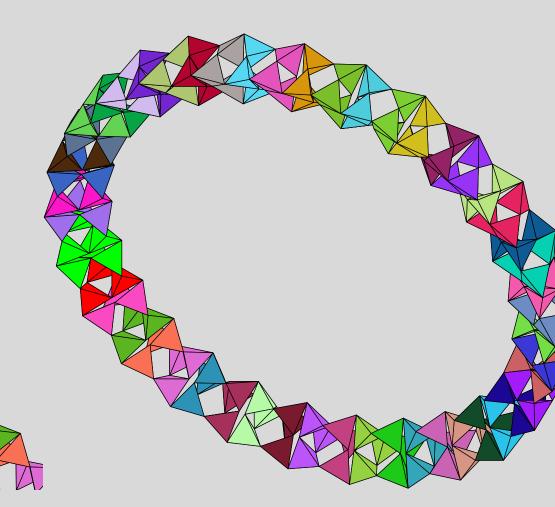
A geometric . . .

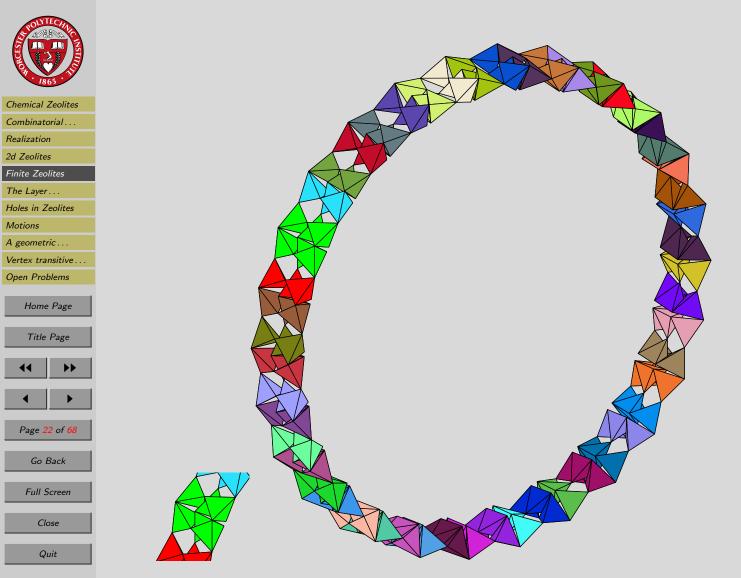
Vertex transitive . . .

Open Problems

Home Page

Title Page




Page **21** of **68**

Full Screen

Close

- Chemical Zeolites Combinatorial... Realization 2d Zeolites
- Finite Zeolites
- The Layer . . .
- Holes in Zeolites
- Motions
- A geometric . . .
- Vertex transitive . .
- Open Problems

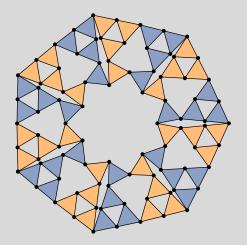
Go Back

Full Screen

Close

Quit

6. The Layer Construction


Z=(T,C) is a combinatorial zeolite realizable in dimension d. $\mathbb{R}^d\subseteq \mathbb{R}^{d+1}$

Label each $t \in T$ arbitrarily with ± 1 .

For +1, erect a d + 1 dimensional simplex in the upper half space,

For -1, erect a d + 1 dimensional simplex in the lower half space,

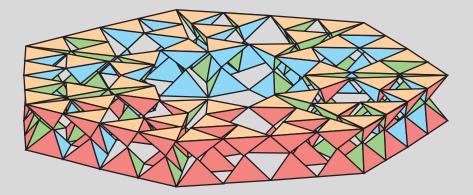
Call the Complex Z_a and its mirror image Z_b .

Alternately staking Z_a and Z_b gives a *layered Zeolite* in \mathbb{R}^{d+1} .

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

- Chemical Zeolites Combinatorial... Realization
- 2d Zeolites
- Finite Zeolites
- The Layer . . .
- Holes in Zeolites
- Motions
- A geometric . . .
- Vertex transitive . . .
- **Open Problems**
 - Home Page
- Title Page

Page 24 of 68


Go Back

Full Screen

Close

Quit

Labels all +1 A two layered zeolite.

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer...

Holes in Zeolites

Motions

A geometric . . .

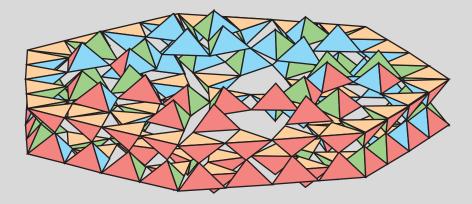
Vertex transitive . .

Open Problems

Home Page

Title Page

Page <mark>25</mark> of <mark>68</mark>

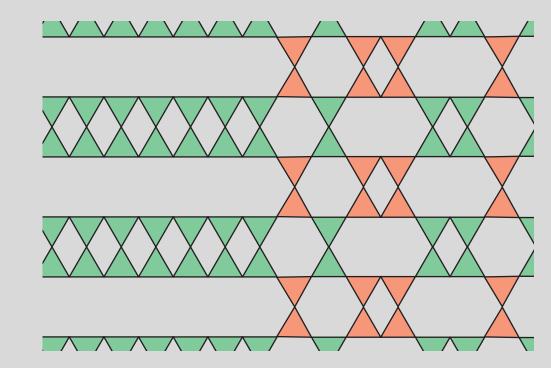

Go Back

Full Screen

Close

Quit

The general case starting from a finite zeolite.


Theorem: There are uncountably many isomorphism classes of unit distance realizable zeolites in \mathbb{R}^3 . (actually in any dimension d > 1. [7])

Chemical Zeolites

Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric... Vertex transitive... Open Problems

Proof:

Full Screen

Page **26** of **68**

Go Back

Home Page

Title Page

••

◀

••

▶

Close

Quit

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric...

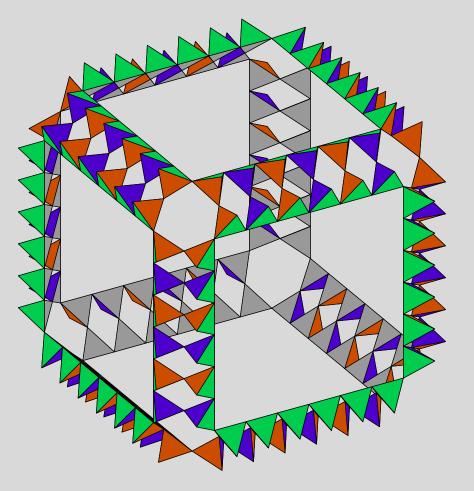
Vertex transitive . . .

Open Problems

Home Page

Title Page

Page <mark>27</mark> of <mark>68</mark>


Go Back

Full Screen

Close

Quit

7. Holes in Zeolites

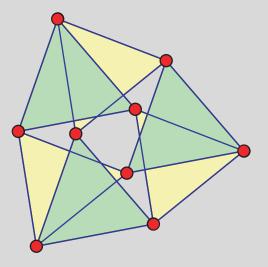
Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric... Vertex transitive... Open Problems Home Page

Title Page

Page <mark>28</mark> of <mark>68</mark>

Go Back

Full Screen


Close

Quit

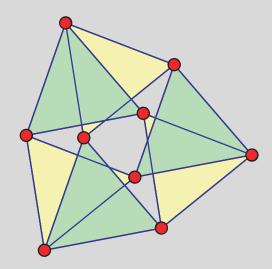
Degree of Freedom

Each *d*-dimensional simplex has d(d+1)/2 degrees of freedom Each of the d+1 contacts removes *d* degrees. By a naïve count, a zeolite is rigid - (overbraced by d(d+1)/2.)

Chemical Zeolites

- Combinatorial . . .
- Realization
- 2d Zeolites
- Finite Zeolites
- The Layer . . .
- Holes in Zeolites
- Motions
- A geometric . . .
- Vertex transitive . . .
- **Open Problems**
 - Home Page
 - Title Page

Page <mark>29</mark> of <mark>68</mark>


Go Back

Full Screen

Close

Quit

Generically globally rigid in the plane.

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites

The Layer...

Holes in Zeolites

Motions

A geometric . . .

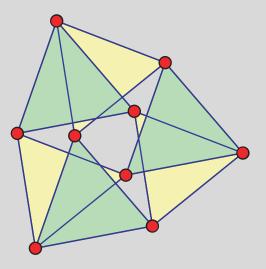
Vertex transitive . .

Open Problems

Title Page

Page <mark>30</mark> of <mark>68</mark>

Go Back


Full Screen

Close

Quit

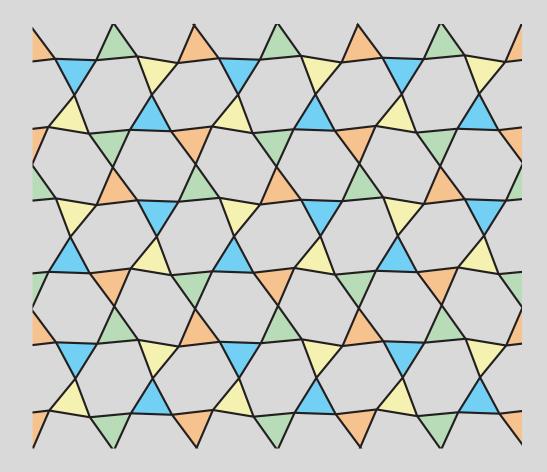
Generically globally rigid in the plane.

A 4-regular vertex transitive graph is globally rigid unless it has a 3-factor consisting of s disjoint copies of K_4 with $s \ge 3$. [Jackson, S, S - 2004]

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric... Vertex transitive... Open Problems

Home	Page
Title	Page


Page **31** of **68**

Go Back

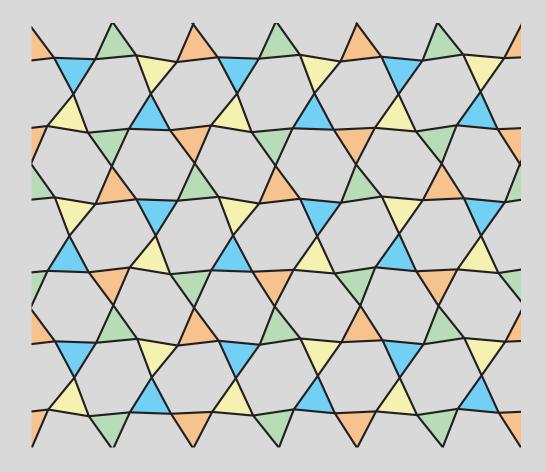
Full Screen

Close

Quit

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric... Vertex transitive... Open Problems

Home	e Page
Title	Page


Page	32	of	68
------	----	----	----

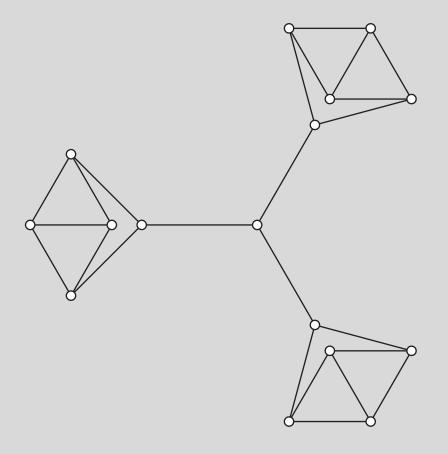
Full Screen

Close

Quit

- Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions
- A geometric . . .
- Vertex transitive . .
- **Open Problems**
- Home Page
- Title Page

Page <mark>33</mark> of <mark>68</mark>


Go Back

Full Screen

Close

Quit

Are there finite generically flexible 2D Zeolites? Yes, line graphs of 3-regular graphs with edge connectivity less than 3.

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites

The Layer...

Holes in Zeolites

Motions

A geometric . . .

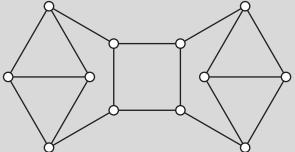
Vertex transitive . .

Open Problems

Home Page Title Page

Page <mark>34</mark> of <mark>68</mark>

Go Back


Full Screen

Close

Quit

Are there finite generically rigid but not globally rigid 2D Zeolites?

Yes, line graphs of 3-regular graphs with edge connectivity less than 3.

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric...

Vertex transitive . .

Open Problems

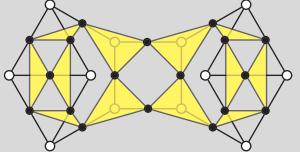
Home Page Title Page

44	••
•	>

Page <mark>35</mark> of <mark>68</mark>

See [5]

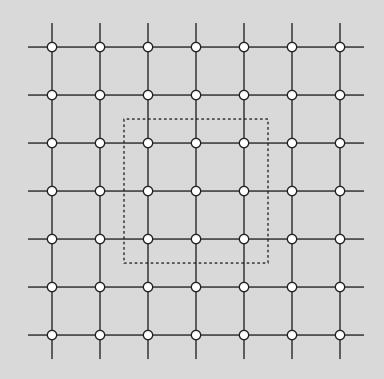
Go Back


Full Screen

Close

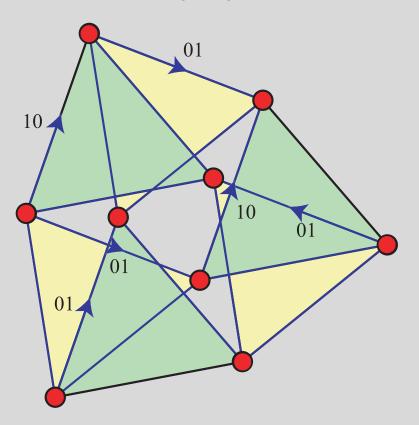
Quit

Are there finite generically rigid but not globally rigid 2D Zeolites?


Yes, line graphs of 3-regular graphs with edge connectivity less than 3.

1865	
Chemical Zeolites	Q
Combinatorial	
Realization	
2d Zeolites	
Finite Zeolites	
The Layer	
Holes in Zeolites	
Motions	
A geometric	
Vertex transitive	
Open Problems	
Home Page	
Title Page	
44	
• •	
Page 36 of 68	
Go Back	
Full Screen	
Close	
Quit	

A geometric approach



Chemical Zeolites Combinatorial . . . Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric . . . Vertex transitive . . **Open Problems** Home Page Title Page •• 44 Þ Page **37** of **68** Go Back Full Screen Close

Quit

Combinatorial version of the gain graph

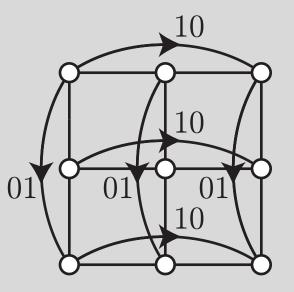
Chemical Zeolites
Combinatorial
Realization
2d Zeolites
Finite Zeolites
The Layer
Holes in Zeolites
Motions
A geometric
Vertex transitive

Open Problems

Home Page

Title Page

Page <mark>38</mark> of <mark>68</mark>


Go Back

Full Screen

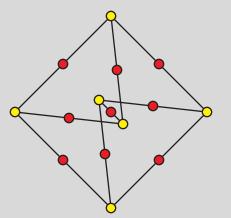
Close

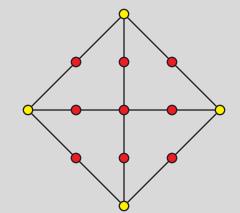
Quit

Geometric version of the gain graph

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric... Vertex transitive... Open Problems

Page <mark>39</mark> of <mark>68</mark>


Go Back


Full Screen

Close

Quit

It's a geometric line graph!

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions

A geometric . . .

Vertex transitive . .

Open Problems

Full Screen

Close

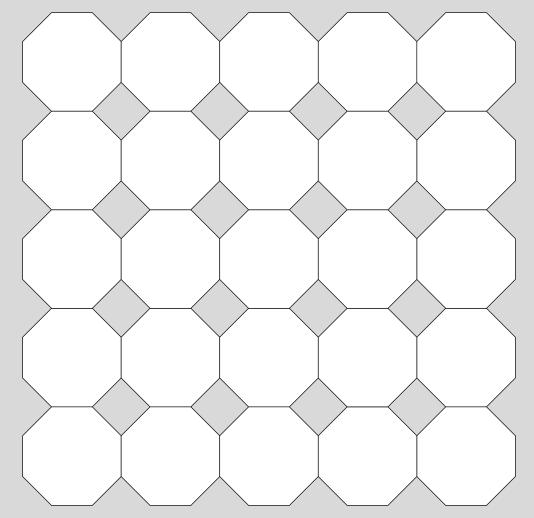
Quit

THEOREM [1] Let G be a locally finite 3-connected almost vertex-transitive planar graph with at most one end. Then G has an embedding on a natural geometry such that all automorphisms of G are induced by isometries of the geometry. Straightening Lemma for maps on the sphere [6].

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric... Vertex transitive... Open Problems

Title Page

Page **41** of **68**



Full Screen

Close

Quit

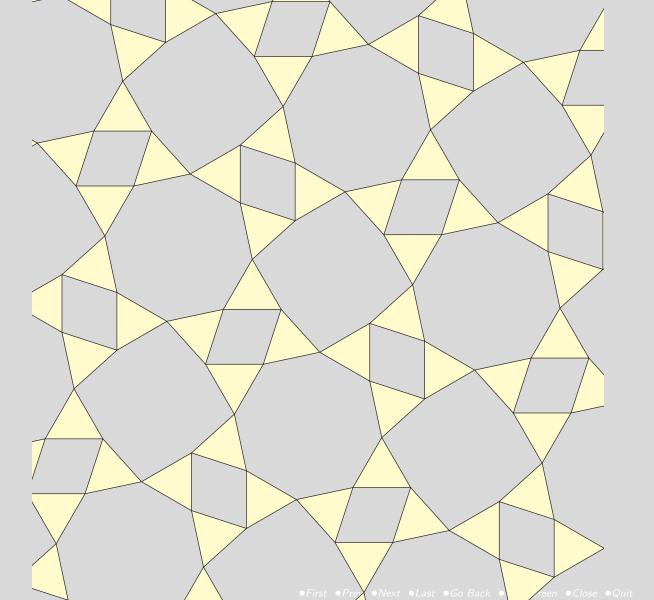
10. Vertex transitive 3-regular

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Chemical Zeolites
Combinatorial
Realization
2d Zeolites
Finite Zeolites
The Layer
Holes in Zeolites
Motions
A geometric

A geon	letine	
Vertex	transitive	

```
Open Problems
```

Full Screen

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer...

Holes in Zeolites

Motions

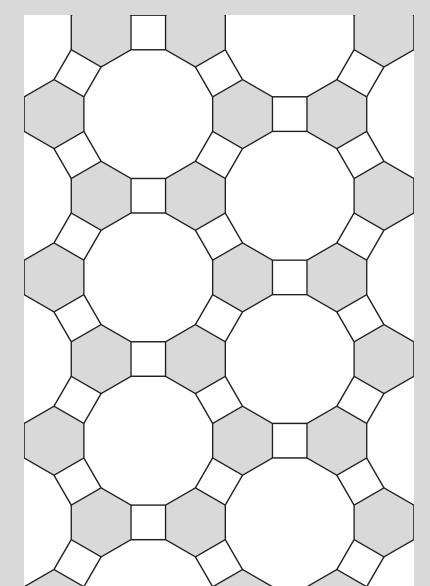
A geometric . . .

Vertex transitive . . .

Open Problems

Home Page

Title Page



Page <mark>43</mark> of <mark>68</mark>

Go Back

Full Screen

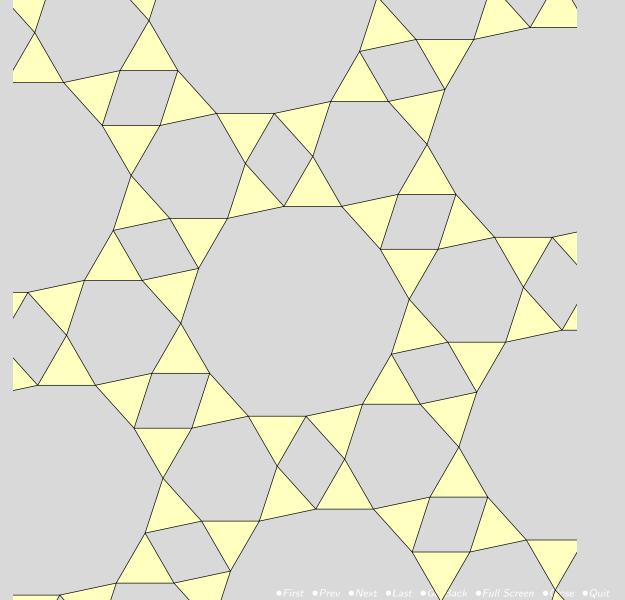
Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric...

Vertex transitive . . .

Open Problems

Home Page

Title Page



Page **44** of **68**

Go Back

Full Screen

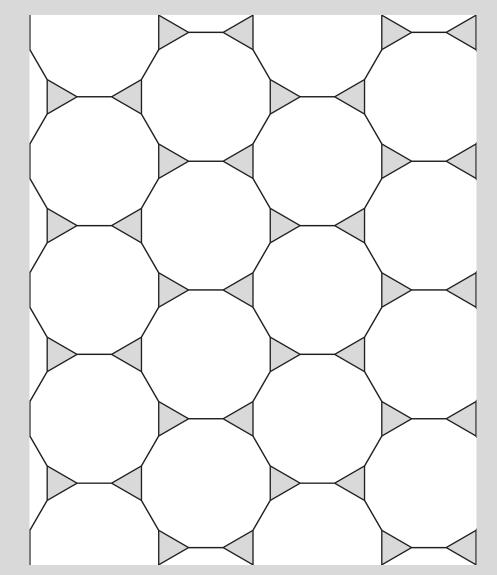
Close

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric...

Vertex transitive . . .

Open Problems

Home Page Title Page



Page **45** of <mark>68</mark>

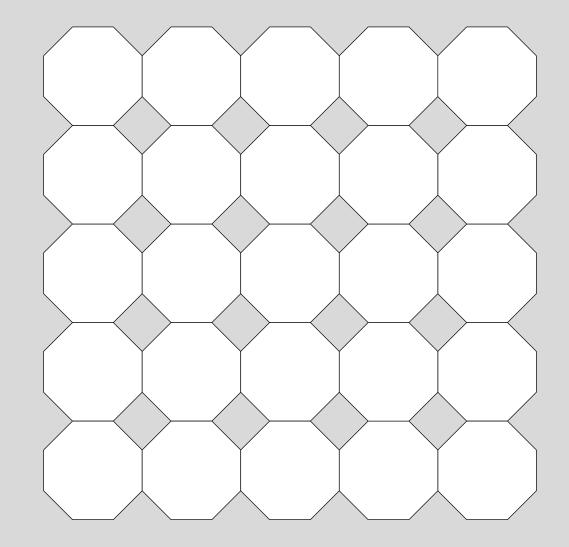
Go Back

Full Screen

Close

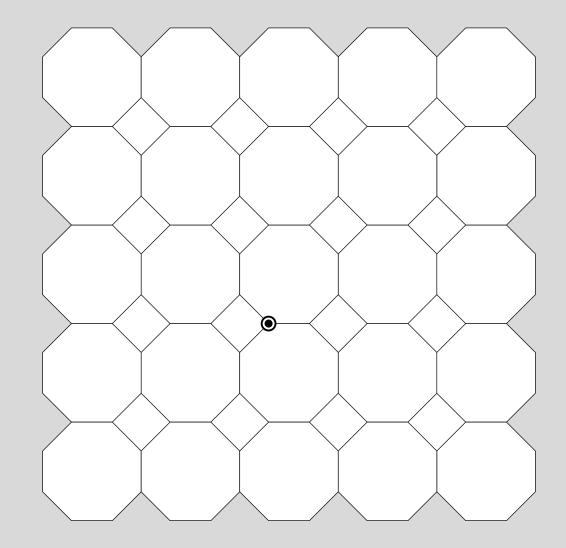
Chemical Zeolites			
Combinatorial			
Realization			
2d Zeolites			\setminus / \setminus /
Finite Zeolites			
The Layer			
Holes in Zeolites			
Motions	X	X	X
A geometric			
Vertex transitive			
Open Problems			$\langle \rangle$
Home Page			
Title Page			
•• ••			
Page <mark>46</mark> of <mark>68</mark>	\mathbf{X}	X	
Go Back			
Full Screen			
Close			
Quit			
		rst ●Prev ●Next ●Last ●Go Ba	ack en •Close •Quit

Chemical Zeolites Combinatorial Realization 2d Zeolites Finite Zeolites The Layer . . . Holes in Zeolites Motions A geometric Vertex transitive Open Problems Home Page



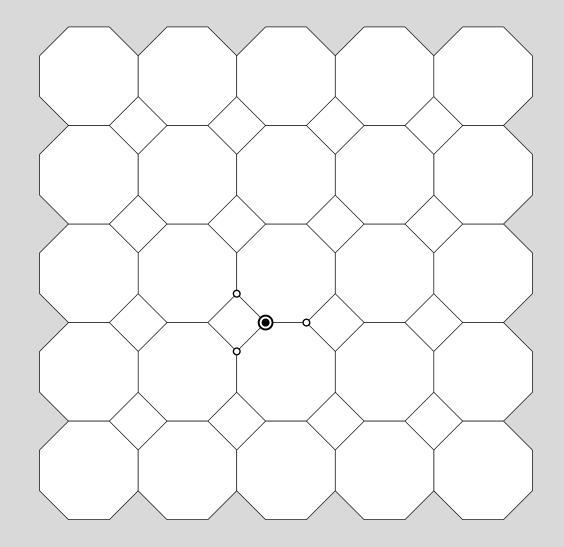
Full Screen

Chemical Zeolites Combinatorial Realization 2d Zeolites Finite Zeolites The Layer . . . Holes in Zeolites Motions A geometric Vertex transitive Open Problems



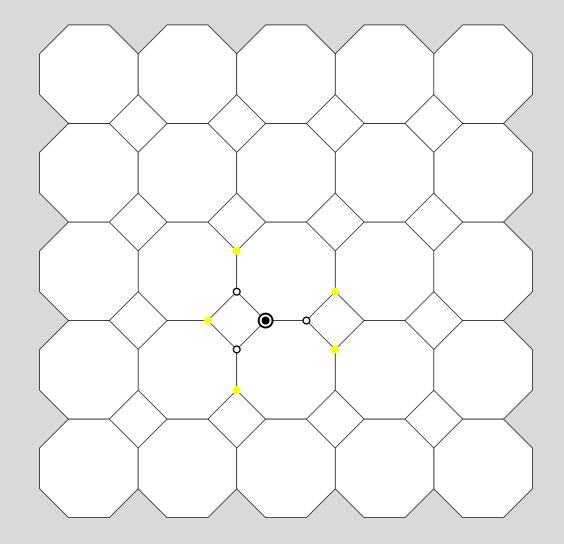
Full Screen

Chemical Zeolites Combinatorial Realization 2d Zeolites Finite Zeolites The Layer . . . Holes in Zeolites Motions A geometric Vertex transitive . . . Open Problems Home Page



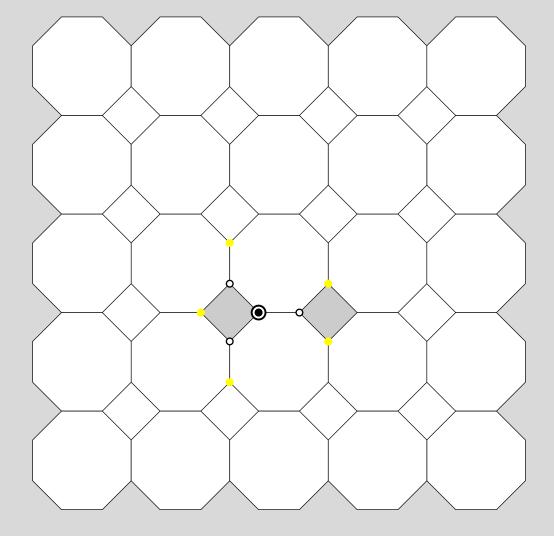
Full Screen

Chemical Zeolites Combinatorial Realization 2d Zeolites Finite Zeolites The Layer . . . Holes in Zeolites Motions A geometric Vertex transitive . . . Open Problems



 O E	Back	

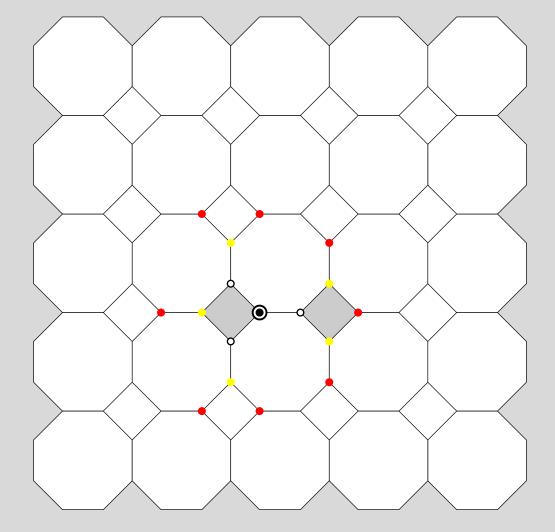
Chemical Zeolites Combinatorial Realization 2d Zeolites Finite Zeolites The Layer . . . Holes in Zeolites Motions A geometric Vertex transitive Open Problems Home Page



Go Back

Full Screen

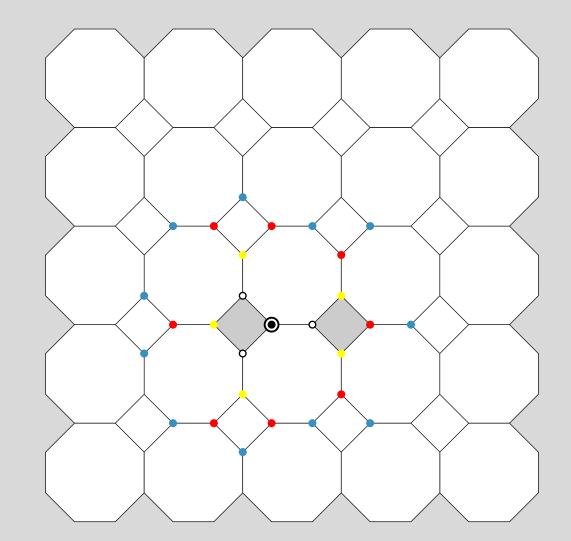
Close



Full Screen

Close

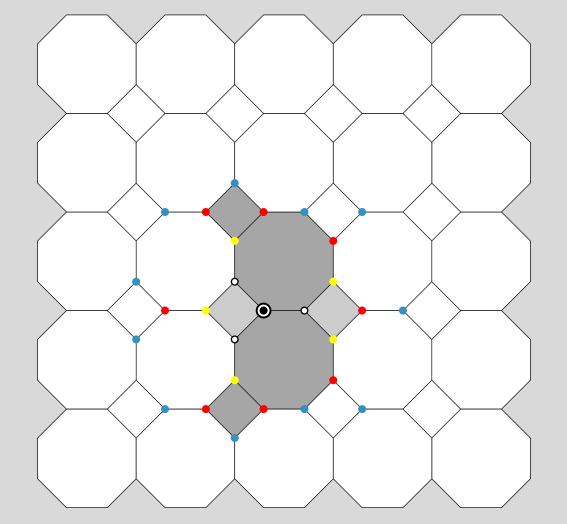
Chemical Zeolites Combinatorial Realization 2d Zeolites Finite Zeolites The Layer . . . Holes in Zeolites Motions A geometric Vertex transitive Open Problems Home Page Title Page



Full Screen

Close

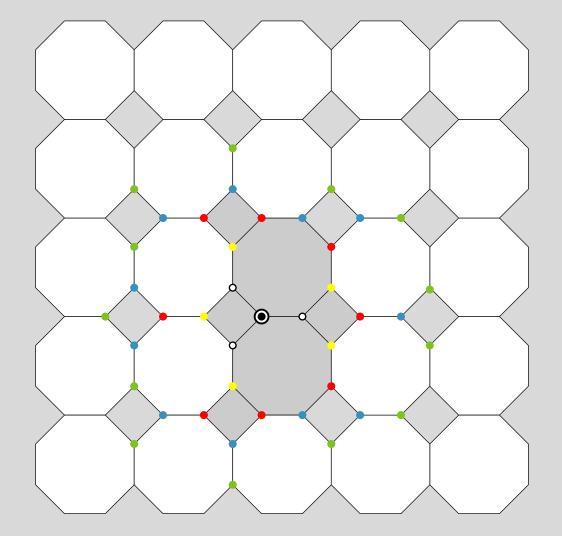
May be pinned isostatically [8].



Go Back

Full Screen

Close

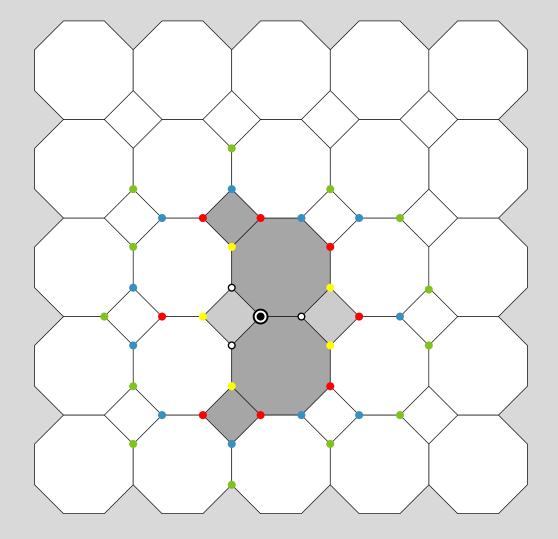

Chemical Zeolites Combinatorial . . . Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric . . . Vertex transitive . . . **Open Problems** Home Page Title Page •• •• ◀ ▶

Page **55** of **68**

Go Back

Full Screen

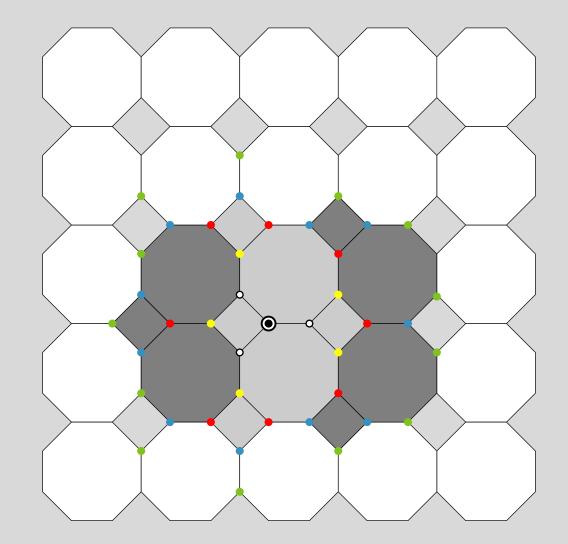
Close


Chemical Zeolites Combinatorial . . . Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric . . . Vertex transitive . . . **Open Problems** Home Page Title Page •• •• ◀ ▶

Page <mark>56</mark> of <mark>68</mark>

Go Back

Full Screen


Close

Chemical Zeolites Combinatorial . . . Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric . . . Vertex transitive . . . **Open Problems** Home Page Title Page •• •• ◀ ▶ Page 57 of 68 Go Back Full Screen

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric...

Vertex transitive . .

Open Problems

Home Page

Page <mark>58</mark> of <mark>68</mark>

Go Back

Full Screen

Close

Quit

11. Open Problems

Use growth rate result to show unit distance embeddability of the line graph of B_r in the almost vertex-transitive case.

Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites The Layer... Holes in Zeolites Motions A geometric... Vertex transitive... Open Problems

Home Page

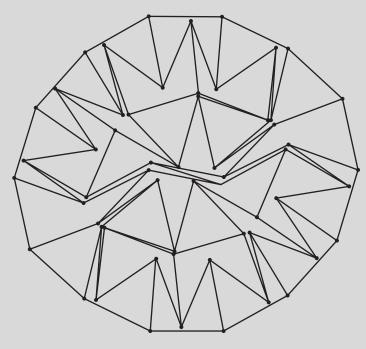
Title Page

Page <mark>59</mark> of <mark>68</mark>

Go Back

Full Screen

Close


Quit

Does there exist a finite 2D zeolite with a planar unit distance realization and having no non-simplex triangle?

Chemical Zeolites	
Combinatorial	
Realization	
2d Zeolites	
Finite Zeolites	
The Layer	
Holes in Zeolites	
Motions	
A geometric	
Vertex transitive	
Open Problems	
Home Page	
Title Page	
•• ••	
• •	
Page <mark>60</mark> of <mark>68</mark>	
Go Back	
Full Screen	
Close	
Quit	

Do there exist finite non-interpenetrating zeolites with unit distance plane non-rigid realizations?

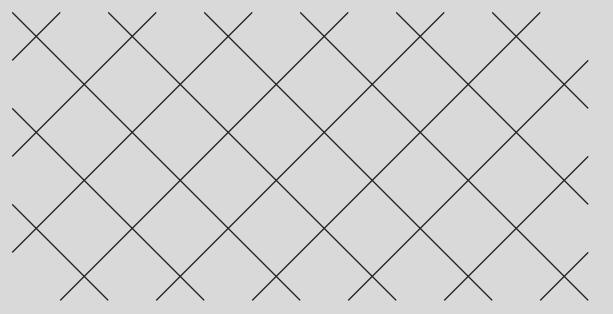
Rigidity properties of the line graph? Unit distance realization?

Chemical Zeolites

Combinatorial
Realization
2d Zeolites
Finite Zeolites
The Layer
Holes in Zeolites
Motions
A geometric
Vertex transitive
Open Problems
Home Page
Title Page
44 >>
•
Page 61 of 68
Go Back
Full Screen
Close
Quit

- Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites
- The Layer...
- Holes in Zeolites
- Motions
- A geometric . . .
- Vertex transitive ...
- Open Problems
 - Home Page

Page <mark>62</mark> of <mark>68</mark>



Full Screen

Close

Quit

Line graphs of unit distance graphs

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Chemical Zeolites Combinatorial . . .

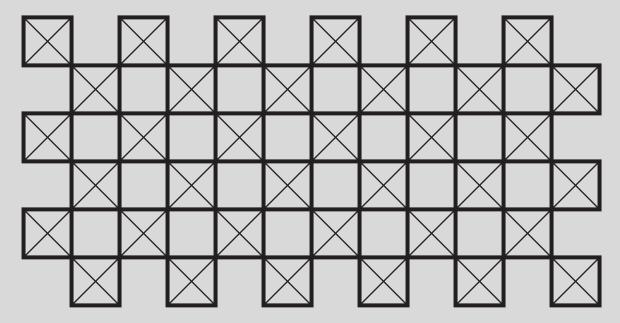
Realization
2d Zeolites

- Finite Zeolites
- The Layer...
- Holes in Zeolites
- Motions
- A geometric . . .
- Vertex transitive
- Open Problems

Home Pa	age
---------	-----

Title Page

44	••
•	►


Page <mark>63</mark> of <mark>68</mark>

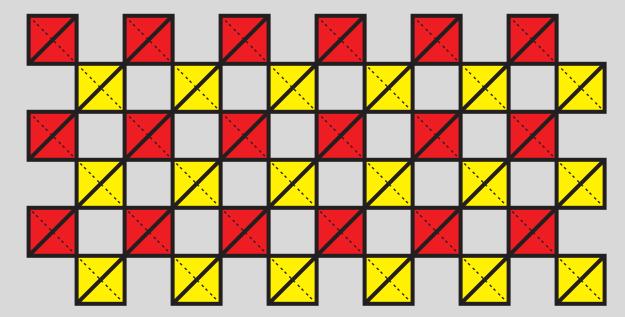
Go Back

Full Screen

Close

Quit

- Chemical Zeolites Combinatorial... Realization 2d Zeolites Finite Zeolites
- The Layer...
- Holes in Zeolites
- Motions
- A geometric . . .
- Vertex transitive . .
- Open Problems
 - Home Page
 - Title Page



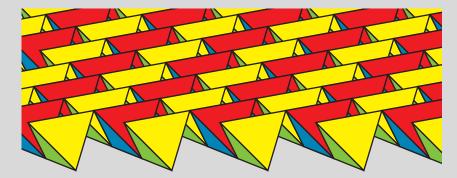
Go Back

Full Screen

Close

Quit

- Chemical Zeolites Combinatorial... Realization
- 2d Zeolites
- Finite Zeolites
- The Layer...
- Holes in Zeolites
- Motions
- A geometric . . .
- Vertex transitive . .
- Open Problems
 - Home Page
 - Title Page


Page <mark>65</mark> of <mark>68</mark>

Go Back

Full Screen

Close

Quit

Chemical Zeolites

Combinatorial
Realization
2d Zeolites
Finite Zeolites
The Layer
Holes in Zeolites
Motions
A geometric
Vertex transitive
Open Problems
Home Page
Title Page
•• ••
Page <mark>66</mark> of <mark>68</mark>
Go Back
Full Screen
Close

Quit

Line graphs of line graphs?

Chemical Zeolites Combinatorial Realization 2d Zeolites Finite Zeolites The Layer . . . Holes in Zeolites Motions A geometric Vertex transitive . . . Open Problems

> Home Page Title Page

Page <mark>67</mark> of <mark>68</mark>

Go Back

Full Screen

Close

Quit

Design nano lentils and prove their realization

Mildred Dresselhaus ($n\acute{e}e$ Spiewak; November 11, 1930 – February 20, 2017), known as the "queen of carbon science"

- Chemical Zeolites
- Combinatorial . . .
- Realization 2d Zeolites
- **F**: **N Z /N**
- Finite Zeolites
- The Layer . . .
- Holes in Zeolites
- Motions
- A geometric . . .
- Vertex transitive . .
- Open Problems

Home Page	
Title Page	
44	>>

Page <mark>68</mark> of <mark>68</mark>

Go Back

Full Screen

Close

- References
- L. BABAI, The growth rate of vertex-transitive planar graphs, in Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (New Orleans, LA, 1997), New York, 1997, ACM, pp. 564–573.
- [2] P. FAZEKAS, O. RÖSCHEL, AND B. SERVATIUS, The kinematics of a framework presented by H. Harborth and M. Möller, Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, pp. 1–9. 10.1007/s13366-011-0079-x.
- [3] H. HARBORTH AND M. MÖLLER, Complete vertex-to-vertex packings of congruent equilateral triangles, Geombinatorics, 11 (2002), pp. 115–118.
- [4] —, Vertex-to-vertex packings of congruent triangles, Abh. Braunschw. Wiss. Ges., 51 (2002), pp. 49–54.
- [5] T. JORDÁN, *Generically globally rigid zeolites in the plane*, Tech. Rep. TR-2009-08, Egerváry Research Group, Budapest, 2009. www.cs.elte.hu/egres.
- [6] B. SERVATIUS AND H. SERVATIUS, The 24 symmetry pairings of self-dual maps on the sphere, Discrete Mathematics, 140 (1995), pp. 167 – 183.
- [7] B. SERVATIUS, H. SERVATIUS, AND M. F. THORPE, *Zeolites: Geometry and combinatorics*, International Journal of Chemical Modeling, 4 (2012), pp. 253–267.
- [8] L. THERAN, A. NIXON, E. ROSS, M. SADJADI, B. SERVATIUS, AND M. F. THORPE, Anchored boundary conditions for locally isostatic networks, Phys. Rev. E, 92 (2015), p. 053306.
- [9] H. WHITNEY, Congruent Graphs and the Connectivity of Graphs, Amer. J. Math., 54 (1932), pp. 150–168.