

Page 1 of 100

Go Back

Full Screen

Close

Quit

1. Regular Objects

-To a geometer - Platonic Solids

Title Page

→

Page 2 of 100

Go Back

Full Screen

Close

Quit

–To a topologist - Platonic Maps

Title Page

Page 3 of 100

Go Back

Full Screen

Close

Quit

–To a graph theorist - Platonic Graphs

Title Page

Page 4 of 100

Go Back

Full Screen

Close

Quit

2. Combinatorics

 \mathcal{M} is a regular map on the sphere:

vertices: m-valent

faces: n-valent.

$$2|E| = m|V| = n|F|$$

Euler characteristic: $\chi(\mathcal{M}) = 2$

Thus

$$\frac{2|E|}{m} - |E| + \frac{2|E|}{n} = 2.$$

Integer solutions: (m, n > 1)

$$1/n + 1/m > 1/2$$
,

 $m=2, n \geq 2$, (an *n*-cycle separating the sphere into two *n*-gonal faces)

m = 3, m = 3 (tetrahedron)

Home Page

Title Page

44 >>

→

Page 5 of 100

Go Back

Full Screen

Close

Quit

m = 3, n = 4 (octahedron),

m = 3 and n = 5 (icosahedron),

m = 4 and n = 3 (cube),

m = 5 and n = 3 (dodecahedron),

 $m \ge 6$ and n = 2 (two vertices connected by n edges forming n 2-gons).

Title Page

Page 6 of 100

Go Back

Full Screen

Close

Quit

3. How many automorphisms?

Title Page

Page 7 of 100

Go Back

Full Screen

Close

Title Page

Page 8 of 100

Go Back

Full Screen

Close

Title Page

Page 9 of 100

Go Back

Full Screen

Close

Quit

4. Fundamental Cayley

Title Page

Page 10 of 100

Go Back

Full Screen

Close

Quit

5. Wallpaper

Title Page

Page 11 of 100

Go Back

Full Screen

Close

Quit

6. Pattern counting

M. C. Escher laboriously examined multitudes of sketches to determine how many different patterns would result by repeatedly translating a 2×2 square having its four unit squares filled with copies of an asymmetric motif in any of four aspects.

7. Boarder Patterns

- The 1×2 case

$$b = \mathbb{N}$$

$$p = \mathbb{Z}$$

$$d = \mathbf{Z}$$

Home Page

Title Page

Page 12 of 100

Go Back

Full Screen

Close

$$bb^* = \cdots bbbbb \cdots =$$
 $bq^* = \cdots bqbqbq \cdots =$
 $qb^* = \cdots qbqbqb \cdots =$
 $qq^* = \cdots qqqqqq \cdots =$

$$bq^* = qb^*$$

$$bb^* = qq^*$$

Rotations only

Home Page

Title Page

Page 13 of 100

Go Back

Full Screen

Close

Quit

$$bb^* = qq^* = \cdots bbbbbb \cdots = 1$$

$$bq^* = qb^* = \cdots bqbqbq \cdots = 1$$

$$bd^* = pq^* = db^* = qp^* = \cdots bdbdbd \cdots = 1$$

$$bp^* = dq^* = pb^* = qd^* = \cdots bpbpbp \cdots = 1$$

$$dd^* = pp^* = \cdots dddddd \cdots = 1$$

$$dp^* = pd^* = \cdots dpdpdp \cdots = 1$$

Rotations and mirrors

$$bb^* = qq^* = dd^* = pp^* = \cdots bbbbbb \cdots = bq^* = qb^* = dp^* = pd^* = \cdots bqbqbq \cdots = bd^* = pq^* = db^* = qp^* = \cdots bdbdbd \cdots = bp^* = dq^* = pb^* = qd^* = \cdots bpbpbp \cdots = bp^*$$

Title Page

Page 14 of 100

Go Back

Full Screen

Close

Quit

$$S = \{w_1, \ldots\}$$
 – signatures P – permutations $\langle P \rangle$ – permutation group

different strip patterns = # orbits

Burnside's Lemma: The number of orbits equals the average number of points fixed by the permutations in the group.

N – number of orbits $\operatorname{fix}(p)$ – the set of signatures fixed by the permutation p.

$$N = \frac{1}{|\langle P \rangle|} \sum_{p \in \langle P \rangle} |\text{fix}(p)|$$

Title Page

Page 15 of 100

Go Back

Full Screen

Close

Quit

$$T(XY) = YX,$$

$$R(XY) = R(Y)R(X)$$

$$(R(b) = q, R(q) = b, R(p) = d \text{ and } R(d) = p)$$

 $\langle P \rangle$ and its action on four signatures

Burnside's Lemma: 8/4 = 2.

Title Page

Page 16 of 100

Go Back

Full Screen

Close

Quit

M(XY) = M(X)M(Y)

M RM TM RTMRTTbbbbbbddddqqqqpppp|bq|qbdpbq|bq|qbpdpddpqbqbqbbqbqdpdppdpdddbbbbddqqqqqqppppbp|bp|dq pb|bp|dqqdpbqdbdbddbbddbpqqppqqpbddbbddbpqqpqppqpbqddqbpdqbppbqdpbbpdqbpdqqdbddbdbbdpqqppqpqqpdbdbdqbdbdqppqqppqbppb|dq|dq|dq|qdpbqdbpbbddppddbbqqqqpdpddpdpbqbqqbqbdp pdpdbqqbqbbqddbbbbppqqppqq

Without reflections - first 4 columns: 24/4 = 6.

With reflections - 32/8 = 4

Title Page

Page 17 of 100

Go Back

Full Screen

Close

Quit

8. The 1×12 case

The signature w = bbddbbppqqpp on a ring, and $T^4M(w)$, and their pattern. $T^6M(w) = w$, so $w \in fix(T^6M)$.

Title Page

Page 18 of 100

Go Back

Full Screen

Close

$$T(a_1 a_2 \dots a_{12}) = a_2 a_3 \dots a_{12} a_1.$$

 $R(a_1 a_2 \dots a_{11} a_{12}) = R(a_{12}) R(a_{11}) \dots R(a_2) R(a_1).$

$$\langle P \rangle = \langle T, R \mid R^2 = T^{12}, RTR = T^{-1} \rangle$$

$$M(a_1 \dots a_{12}) = M(a_1) \dots M(a_{12}),$$

 $\langle T, R, M \rangle = \langle T, R \rangle \oplus \langle M \rangle$

Title Page

Page 19 of 100

Go Back

Full Screen

Close

- 12 rotations of 180° around axis in the horizontal plane through the center of the ring.
- 6 have axes passing through the centers of two motifs
- 6 have axes on the midpoints of motif boundaries, with the motifs being divided into 6 pairs of orbits.
- $6 \cdot 4^6$ fixed signatures.

12 rotations about the vertical axis of $\frac{i}{12}360^{\circ} = i \cdot 30^{\circ}$, $i = 1 \dots 12$.

i and 12 have a common divisor: k,

$$i = pk,$$
 $12 = qk$

 $q \cdot (i \cdot 30^{\circ})$ is a multiple of 360°

 $|\operatorname{orbit}(i \cdot 30^{\circ})| = 12/\gcd(i, 12)$ – There are $\gcd(i, 12)$ of them.

Home Page

Title Page

Page 20 of 100

Go Back

Full Screen

Close

Each of these will have $4^{12/k}$ fixed signatures, since we are free to choose any of the four aspects for each orbit.

For each divisor k of 12 there are rotations with orbit size k.

Twelve has divisors 12, 6, 4, 3, and 2.

12: i = 1, 5, 7, 11,

Quit

fixed signatures.

$$4:i =$$

$$4:i=$$

$$2:i = 6 = 1 \cdot \frac{12}{2}$$

 $\varphi(12) \cdot 4^{12/12} + \varphi(6) \cdot 4^{12/6} + \varphi(4) \cdot 4^{12/4} + \varphi(3) \cdot 4^{12/3}$

 $+ \varphi(2) \cdot 4^{12/2} + \varphi(1) \cdot 4^{12/1}$

$$= 1 \cdot$$

$$\frac{6}{12}$$
, $\frac{12}{4}$, 3

$$\cdot \frac{1}{6}, 5 \cdot \frac{1}{12}$$

$$6: i = 2, 10 = 1 \cdot \frac{12}{6}, 5 \cdot \frac{12}{6},$$

$$4: i = 3, 9 = 1 \cdot \frac{12}{4}, 3 \cdot \frac{12}{4},$$

$$3: i = 4, 8 = 1 \cdot \frac{12}{3}, 2 \cdot \frac{12}{3},$$

$$5 \cdot \frac{12}{6},$$

$$12$$

$$\frac{12}{6}$$
, 12

Title Page

Page 22 of 100

Go Back

Full Screen

Close

Quit

twelve reflections in vertical mirrors,

6 of which pass through the center of a motif, 6 of which pass through the boundaries of the aspects,

 $6 \cdot 4^6$ fixed signatures

Title Page

Page 23 of 100

Go Back

Full Screen

Close

Quit

Rotary Reflections

$$\varphi(12) \cdot 4^{12/12} + \varphi(6) \cdot 4^{12/6} + \varphi(4) \cdot 4^{12/4} + \varphi(2) \cdot 4^{12/2}$$

fixed signatures

Title Page

Page 24 of 100

Go Back

Full Screen

Close

Quit

9. The 1×15 case

Rotations:

$$\varphi(15) \cdot 4^{15/15} + \varphi(5) \cdot 4^{15/5} + \varphi(3) \cdot 4^{15/3} + \varphi(1) \cdot 4^{15/1}$$

Rotary Reflections: 0

Vertical Mirror Reflections: 0 Horizontal Axis Rotations: 0

Title Page

Page 25 of 100

Go Back

Full Screen

Close

Quit

10. The $1 \times n$ case

In the general case, the group $\langle T, R, M \rangle$ has elements:

Vertical axis rotations T

Horizonal axis rotations T^iR

Vertical reflections T^iRM

Rotary reflections T^iM .

and acts on a signature $w = Q_1 Q_2 \cdots Q_n, Q_i \in \{b, q, d, p\}$

via

Translation: $T(Q_1Q_2\cdots Q_n) = Q_2Q_3\cdots Q_nQ_1$.

Rotation: $R(Q_1Q_2\cdots Q_n) = R(Q_n)\cdots R(Q_2)R(Q_1).$

Mirror: $M(Q_1Q_2\cdots Q_n) = M(Q_1)M(Q_2)\cdots M(Q_n).$

Title Page

Page 26 of 100

Go Back

Full Screen

Close

Quit

vertical axis rotations:

2 aspects
$$-p(n) = \sum_{k} \varphi(k) 2^{n/k}$$

2 aspects
$$-p(n) = \sum_{k|n} \varphi(k) 2^{n/k}$$

4 aspects $-P(n) = \sum_{k|n} \varphi(k) 4^{n/k}$

rotary reflections

4 aspects –
$$R(n) = \sum_{k|n,2|k} \varphi(k) 4^{n/k}$$

horizontal axis rotations/vertical mirror reflections:

2 aspects
$$q(n) = \begin{cases} (n/2)2^{n/2} & \text{for } n \text{ even and} \\ 0 & \text{for } n \text{ odd} \end{cases}$$

4 aspects $Q(n) = \begin{cases} (n/2)r^{n/2} & \text{for } n \text{ even and} \\ 0 & \text{for } n \text{ odd} \end{cases}$

Title Page

Page 27 of 100

Go Back

Full Screen

Close

Quit

Two aspects and rotational symmetry

$$f(n) = \frac{p(n) + q(n)}{2n}$$

Four aspects and rotational symmetry

$$F(n) = \frac{P(n) + Q(n)}{2n}$$

Four aspects and general symmetry

$$G(n) = \frac{P(n) + 2Q(n) + R(n)}{4n}$$

n	2 motifs	4 motifs, oriented	4 motifs, unoriented
	f(n)	F(n)	G(n)
1	1	2	1
2	2	6	4
3	2	12	6
4	4	39	23
5	4	104	52
6	9	366	194
7	10	1172	586
8	22	4179	2131
9	30	14572	7286
10	62	52740	26524
11	94	190652	95326
12	192	700274	350738
13	316	2581112	1290556
14	623	9591666	4798174
15	1096	35791472	17895736
16	2122	134236179	67127315
17	3856	505290272	252645136
18	7429	1908947406	954510114
19	13798	7233629132	3616814566
20	26500	27488079132	13744183772

11. The 1×4 case: Escher revisited

Home Page

Title Page

Page 29 of 100

Go Back

Full Screen

Close

Title Page

→

Page 30 of 100

Go Back

Full Screen

Close

Title Page

Page 31 of 100

Go Back

Full Screen

Close

- 1. f(n) A053656 in Sloan's On-Line Encyclopedia of integer sequences
- 2. $G(n) \approx 2F(n)$
- 3. $G(n) \approx 4^n/(4n) \ (G(p) = \lceil 4^n/(4n) \rceil \ \text{for } n = p \text{ prime})$
- 4. Symmetric motifs
- 5. Over/Under weave motifs
- 6. Multiple motifs

Title Page

Page 32 of 100

Go Back

Full Screen

Close

Quit

12. Self-Duality

Title Page

Page 33 of 100

Go Back

Full Screen

Close

Title Page

Page 34 of 100

Go Back

Full Screen

Close

Title Page

Page 35 of 100

Go Back

Full Screen

Close

Title Page

Page 36 of 100

Go Back

Full Screen

Close

Title Page

Page 37 of 100

Go Back

Full Screen

Close

Title Page

44 >>>

→

Page 38 of 100

Go Back

Full Screen

Close

Title Page

44 >>

→

Page 39 of 100

Go Back

Full Screen

Close

Title Page

Page 40 of 100

Go Back

Full Screen

Close

Quit

13. Maps are not enough

A self-dual graph with no corresponding self-dual map.

Title Page

Page **41** of **100**

Go Back

Full Screen

Close

Quit

14. The Block-Cutpoint Tree

For any graph G, the cycle matroid of G is the direct sum over the cycle matroids of the blocks of G:

$$M(G) = \sum M(G_i)$$

Title Page

Page 42 of 100

Go Back

Full Screen

Close

Quit

15. The 3-Block Tree

For a 2-connected graph G, the cycle matroid of G is the 2-sum over the cycle matroids of the 3-blocks of G:

$$M(G) = M(G_0) \bigoplus_{e_1} M(G_1) \dots \bigoplus_{e_k} M(G_k)$$

Title Page

Page 43 of 100

Go Back

Full Screen

Close

Quit

16. The Program

Program: Given a planar graph with whose automorphism group has finitely many vertex orbits.

- 1. If 3-connected embed and straighten so that the automorphisms are represented by isometries (euclidean, spherical, or hyperbolic).
 - Apply geometric methods.
- 2. Else if two-connected form the 3–block tree and use the program on each block, and merge with data on the automorphisms of the tree.
- 3. Else if connected from the block-cutpoint tree and apply the program to each block, merging with the tree automorphisms.
- 4. Else apply program to each connected component, and merge with permutations of isomorphic components.

Title Page

44 >>

→

Page 44 of 100

Go Back

Full Screen

Close

Title Page

Page 45 of 100

Go Back

Full Screen

Close

Quit

17. Bibliography

- Dan Davis, On a tiling scheme from M. C. Escher, http://www.combinatorics.org/Volume_4/Abstracts/v4i2r23ab.html
- S. Passiouras, http://www.eschertiles.com
- Doris Schattschneider, *Escher's combinatorial patterns*, http://www.combinatorics.org/Volume_4/Abstracts/v4i2r17ab.html
- Construction of self-dual graphs, (with P. R. Christopher) American Mathematical Monthly, **99**, 2, 153–158, 1992.
- Self-dual maps on the sphere, (with H. Servatius), Discrete Math. **134**, 139–150, 1994.
- The 24 symmetry pairings of self-duality maps, (with H. Servatius) Discrete Math. 140, 167–183, (1995).
- Self-dual graphs, (with H. Servatius) Discrete Math. 149, 223–232, (1996).

Contents

Home Page

Title Page

Page 46 of 100

Go Back

Full Screen

Close

- Brigitte and Herman Servatius, Symmetry, automorphisms, and self-duality of infinite planar graphs and tilings Proceedings of the Internatinal Geometry Conference in Zilina", Vojtek Balint, Ed., 83-116, 1998. http://cs.clarku.edu/~hservatius/self5.html
- On-Line Encyclopedia of Integer Sequences http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A053656
- Brigitte Servatius, The geometry of folding paper dolls, The Mathematical Gazette, v. 81, no. 490(1997), pp 29–37.