1. Regular Objects

~To a geometer - Platonic Solids
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—To a topologist - Platonic Maps
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2. Combinatorics

M is a regular map on the sphere:
vertices: m-valent
faces: m-valent.

2|E| = m|V| = n|F|

Euler characteristic: x(M) = 2

Thus e A
Al , 2EL _

m n
Integer solutions: (m,n > 1)

2.

I/n+1/m>1/2,

m = 2, n > 2, (an n-cycle separating the sphere into two
n-gonal faces)



m = 3, m = 3 (tetrahedron)

m = 3, n = 4 (octahedron),

m = 3 and n = 5 (icosahedron),

m =4 and n = 3 (cube),

S84 AN

m =5 and n = 3 (dodecahedron),
m > 6 and n = 2 (two vertices connected by n edges forming
n 2-gons).




How many automorphisms?
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4. Fundamental Cayley
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6. Pattern counting

M. C. Escher laboriously examined multitudes of sketches
to determine how many different patterns would result by
repeatedly translating a 2 x 2 square having its four unit
squares filled with copies of an asymmetric motif in any of
four aspects.




7. Boarder Patterns

— The 1 x 2 case

[ Homereze | b=N p=W qg =N d="14
bb : AN bg : NN qb: W qq : W.
[« » ]
L1 ] bb* — - - bbbbbb - - - —
R I
[run i ¢ = -~ babab
gb* = - qbgbqb - - - =
[ oo | 90" =+ qqqqqq -+ =
[t seren ]
bq* = qb"
[ o ] .
bb* = qq
[ aw |



Rotations only

bb* = qq" = - - - bbbbbb - -

bg* = qb* = - - - bgbqbq - - -

bd* = pqg* = db* = gp” = - - - bdbdbd - - -
bp" =dq* =pb* =qd" = ---bpbpbp - - -
dd" = pp" = ---dddddd - - -

dp* = pd* = - - - dpdpdp - - -

Rotations and mirrors

bb* = qq* = dd* = pp* = - - - bbbbbb - - -
bg* = qb" = dp" = pd" = ---bgbgbq - - -
bd" = pqg* = db* = qp" = - - - bdbdbd - - -
bp* =dq* =pb* =qd" = ---bpbpbp - - -

WAVAVAVAVAVAY/



S = {wy,...} — signatures
P — permutations
(P) — permutation group

# different strip patterns = # orbits

Burnside’s Lemma: The number of orbits equals the average
number of points fixed by the permutations in the group.

N — number of orbits
fix(p) — the set of signatures fixed by the permutation p.

1
N = W pez% fix(p)]



T(XY) =YX,
R(XY) = R(Y)R(X)

(R(b) = q, R(q) = b, R(p) = d and R(d) = p)

R——RT I R T RT
bb bb qq bb qq
bq bqg bg qb qb
qb lqb qb bg bq

1 T

qq bb bb
(P > and its action on four signatures

Burnside’s Lemma: 8/4 = 2.
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qq bb qq pp dd pp dd
qgb qgb pd pd dp dp
bg bg dp dp pd pd
bb dd pp dd pp
pb qd pb qd bp dg
db gp pg bd qgp db
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pq pg bd gqp db bd pg db  qp
db db gp bd pg gp dg pg bd

Soeck pp pp dd pp dd bb qq bb  qq

pd pd pd dp dp bg bg gb  gb

dp dp dp pd pd qb b by by

dd ldd pp pp qq bbb qq  bb
Without reflections - first 4 columns: 24/4 = 6.

With reflections - 32/8 = 4



8. The 1 x 12 case

The signature w = bbddbbppqqpp on a ring, and T*M (w),
and their pattern. T°M (w) = w, so w € fix(T°M).




T(a1a2 b o c alg) = Q903 ... A1201.

R(ajay . ..ap1a19) = R(as)R(ay) ... R(az)R(ay).

T
(PY=(T"R|R*=T" RTR=T")

M(ay...a15) = M(ay)... M(ap),
(T,R,M) = (T, R) & (M)



12 rotations of 180° around axis in the horizontal plane
through the center of the ring.

6 have axes passing through the centers of two motifs

6 have axes on the midpoints of motif boundaries, with the
motifs being divided into 6 pairs of orbits.

6 - 4% fixed signatures.



12 rotations about the vertical axis of 112360o =1-30° 1=
1...12.
¢ and 12 have a common divisor: k,

1 = pk, 12 = qk
q - (i -30°) is a multiple of 360°

lorbit(¢ - 30°| = 12/ ged (¢, 12) — There are ged (i, 12) of them.

412/ ged(7,12)




For each divisor k of 12 there are rotations with orbit size k.

Each of these will have 4'%/* fixed signatures, since we are
free to choose any of the four aspects for each orbit.

Twelve has divisors 12, 6, 4, 3, and 2.

12:i= 1,5,7,11,

6:1 2,10 1 125 12
= = -« — -« —
Y 67 67
4 3,9 1123 12
1 = = R -« —
Y 47 47
3 4,8 1122 12
1 = _— —_— o —
Y 37 37
12
2 1 = 6 :1-—
2

90(12) .412/12 + 90(6) . 412/6 + 90(4) . 412/4 + 90(3> . 412/3
4+ 90(2) . 412/2 + (,0(1) . 412/1

fixed signatures.



twelve reflections in vertical mirrors,

6 of which pass through the center of a motif,
6 of which pass through the boundaries of the aspects,

6 - 45 fixed signatures




Rotary Reflections

p(12) - 42772 + p(6) - 4/ + p(4) - 4% + (2) -

fixed signatures



9. The 1 x 15 case

Rotations:
90(15) . 415/15 + @(5) .415/5 + @(3> . 415/3 + @(D . 415/1

Rotary Reflections: 0
Vertical Mirror Reflections: 0
Horizontal Axis Rotations: 0

= @




10. The 1 X n case

In the general case, the group (T, R, M) has elements:
Vertical axis rotations 7"

Horizonal axis rotations T'R

Vertical reflections T'RM

Rotary reflections T'M.
and acts on a signature w = Q1Qs- -+ Q,, Q; € {b,q,d, p}
via

Translation: T(Q1Q2--- Q) = Q:Q5---Q,Q1.

Rotation: R(Q1Qs---Q,) = R(Q,) - R(Q2)R(Q).
MiITOI': M(Q1Q2 °©oo Qn) = M(Q1>M<Q2> © 0o M(Qn)



vertical axis rotations:

2 aspects — p(n) = Z (k)2
kn

4 aspects — P(n) = Z SO(k)4"/k
kln

rotary reflections

4 aspects — R(n) = Z o(k)4m*

k|n,2|k

horizontal axis rotations/vertical mirror reflec-
tions:

n/2
2 aspects q(n) = { é”/ 2)2 1{2; Z g\(fiedn and

n/2
4 aspects Q(n) = { (n/2)r igi: Z i\(ﬁﬂ and




Two aspects and rotational symmetry

_ pw) + ()
fom) =22 E

Four aspects and rotational symmetry

Finy = P Q)

Four aspects and general symmetry

P(n)+2Q(n) + R(n)
4dn

G(n) =
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2 motifs 4 motifs, oriented 4 motifs, unoriented

F(n)

2

6

12

39

104

366

1172

4179

14572
52740
190652
700274
2581112
9591666
35791472
134236179
505290272
1908947406
7233629132
27488079132

G(n)

1

4

§

23

52

194

536

2131

7286
26524
95326
350738
1290556
4798174
17895736
67127315
252645136
954510114
3616814566
13744183772
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11.

The 1 x 4 case: Escher revis-

ited

O© 00 J O Ut = W N =

—_
)

bbb
el N\ NN NN NN\ NN\
bbby DAAYARANARNNYANNY/
bbbd
el N\ N NN\ N NNNN NN\ N
bbgp NNVARNVARNVANY
bbgd DANVANRNNNANVANNA
by NAYARRARRARNYAN
e\ \//Z\\//\\//\\//,
bbpd



CES

$0“ Tf,?A
;ﬁﬁ %
- N =
o ol
& 0

o 2 §

& S

11
12

13
14

15
16
17
18
19
20

21
22

23

bbdg
bbdp
bbdd
bgbq
bgbp
bgbd
B \\ 77 \\ /Z/\\ /7 \\ /7|
badp NNAANIANIANNS
ooy WAYAYAVAVAVAVAY/
by WAVAYAVAVAVAVAY
bdbd
bvdgp WANVAYAVAAVAYAVY
2 Y /AN /AN AV /\



1. f(n) — A053656 in Sloan’s On-Line Encyclopedia of in-
teger sequences

2. G(n) =~ 2F (n)

3. G(n) = 4" /(4n) (G(p) = [4"/(4n)] for n = p prime)
4. Symmetric motifs

5. Over/Under weave motifs

6. Multiple motifs




Self-Duality
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13. Maps are not enough

L »

A self-dual graph with no corresponding self-dual map.



14. The Block-Cutpoint Tree

For any graph G, the cycle matroid of G is the direct sum
over the cycle matroids of the blocks of G

M(G) = ZM(GZ>




15. The 3-Block Tree

For a 2-connected graph G, the cycle matroid of G is the
2-sum over the cycle matroids of the 3-blocks of G:

M(G) = M(G,) EBM (Gy). @M (Gr)




16. The Program

Program: Given a planar graph with whose automorphism
group has finitely many vertex orbits.

1. If 3-connected — embed and straighten so that the au-
tomorphisms are represented by isometries (euclidean,
spherical, or hyperbolic).

Apply geometric methods.

2. Else if two-connected — form the 3-block tree and use
the program on each block, and merge with data on the
automorphisms of the tree.

3. Else if connected — from the block-cutpoint tree and ap-
ply the program to each block, merging with the tree
automorphisms.

4. Else apply program to each connected component, and
merge with permutations of isomorphic components.
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