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1. Introduction

Generic rigidity in the plane is a graph theoretic property:

Theorem 1 (Laman - 1970)[7] A graph is generically rigid
in the plane if and only if it has a subset |E| of edges with

|E| = 2|V (E)| − 3

and, for every subset F ⊆ E,

|F | ≤ 2|V (F )| − 3.
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Rigidity
Different notions of rigidity.
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Rigidity
Non rigid graphs have a motion.
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Non-infinitesimally rigid graphs have
initial velocity candidates.
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Generic rigidity is a property of the graph,
not the embedding.
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2. Type of Rigidity

We will use the term framework (in m-space) to denote a triple
(V,E,−→p ), where (V,E) is a graph and −→p is an embedding
(injection) of V into real m-space.
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We say that a framework is globally rigid (in m-space) if all
solutions to the system of quadratic equations obtained from
requiring all edge lengths to be fixed, with the coordinates of
the vertices as variables, correspond to congruent frameworks;
we say that a framework is rigid (in m-space) if all solutions to
the corresponding system in some neighborhood of the original
solution (as a point in mn-space) come from congruent frame-
works.
DON’T CLICK HERE!

file:///c:/o/o.html
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We say that a given framework (V,E,−→p ) is generic if all frame-
works corresponding to points in a neighborhood of P = −→p (V )
in Rnm are rigid or not rigid as is (V,E,−→p ). A set of points P
in m-space is said to be generic if each framework (V,E,−→p )
with −→p (V ) = P is generic.
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IfG(V,E) is not rigid, we call the maximal rigid subgraphs ofG
the rigid components and note that rigid components partition
E. Then M(G) is the direct sum over its restrictions on the
rigid components.
The following theorem is equivalent to Laman’s Theorem 1,
it uses the rank function of M rather than independence to
characterize rigidity.
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Theorem 2 [9] Let G = (V,E) be a graph. Then G is rigid
if and only if for all families of induced subgraphs {Gi =
(Vi, Ei)}mi=1 such that E = ∪m

i=1Ei we have
∑m

i=1(2|Vi| − 3) ≥
2|V | − 3.
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G(V,E) is called redundantly rigid if G(V,E − e) is rigid for
all e ∈ E, i.e. the removal of a single edge e from the rigid
graph G does not destroy rigidity. Redundant rigidity is a key
to characterize global rigidity.

Theorem 3 [5] Let G be a graph. Then G is globally rigid if
and only if G is a complete graph on at most three vertices,
or G is both 3-connected and redundantly rigid.
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3. Vertex transitive graphs

Theorem 4 A four-regular vertex transitive graph is gener-
ically rigid in the plane if and only if it contains no subgraph
isomorphic to K4, or is K5 or one of the graphs in the fol-
lowing figure.
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K4£K2
a) b)

Vertex transitive rigid graphs containing K4.
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Theorem 5 Let G be a connected k-regular vertex transi-
tive graph on n vertices. Then G is not rigid if and only if
either:
(a) k = 2 and n ≥ 4.
(b) k = 3 and n ≥ 8.
(c) k = 4 and G has a factor consisting of s disjoint copies
of K4 where s ≥ 4
(d) k = 5 and G has a factor consisting of t disjoint copies
of K5 where t ≥ 8.
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Two embeddings which are rigid, but neither infinitesimally
rigid nor globally rigid.
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Two embeddings which are rigid and infinitesimally rigid but
not globally rigid.
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Two embeddings which are rigid, but not globally rigid.



Introduction

Type of Rigidity

Vertex transitive . . .

Example

Random graphs

More general . . .

Modeling molecules

Molecular . . .

Realization in the . . .

Combinatorial . . .

Open problems

Home Page

Title Page

JJ II

J I

Page 18 of 64

Go Back

Full Screen

Close

Quit

•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

4. Example
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However,Lovász and Yemini [9] note that their proof technique
will show that G−{e1, e2, e3} is rigid for all e1, e2, e3 ∈ E, and
hence that G is redundantly rigid. This result was combined
with Theorem 3 in [5] to deduce

Theorem 6 Every 6-connected graph is globally rigid.
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5. Random graphs

Let Gn,d denote the probability space of all d-regular graphs on
n vertices with the uniform probability distribution. A sequence
of graph properties An holds asymptotically almost surely, or
a.a.s. for short, in Gn,d if limn→∞ PrGn,d

(An) = 1. Graphs in
Gn,d are known to be a.a.s. highly connected. It was shown by
Bollobás [1] and Wormald [12] that if G ∈ Gn,d for any fixed
d ≥ 3, then G is a.a.s. d-connected. This result was extended
to all 3 ≤ d ≤ n − 4 by Cooper et al. [3] and Krivelevich et
al. [6]. Stronger results hold if we discount ‘trivial’ cutsets. In
[13], Wormald shows that if G ∈ Gn,d for any fixed d ≥ 3, then
G is a.a.s. cyclically (3d− 6)-edge-connected.
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Theorem 7 If G ∈ Gn,4 then G is a.a.s. globally rigid.

In fact this result holds for all d ≥ 4.

Theorem 8 If G ∈ Gn,d and d ≥ 4 then G is a.a.s. globally
rigid.
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Let G(n, p) denote the probability space of all graphs on n
vertices in which each edge is chosen independently with prob-
ability p. In the following we will assume that all logarithms
are natural. We will need the following results on G(n, p).

Lemma 1 Let G ∈ G(n, p), where p = (log n + k log log n +
w(n))/n, k ≥ 2 is an integer and limn→∞w(n) = ∞. For
each fixed integer t, let St be the set of vertices of G of
degree at most t. Then, a.a.s.
(a) Sk−1 is empty,
(b) no two vertices of St are joined by a path of length at
most two in G,
(c) G− St−1 is non-empty and t-connected.

Proof: Facts (a) and (b) are well known, see for example [2].
Fact (c) follows from (a), (b) and [10, Theorem 4] �
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Theorem 9 Let G ∈ G(n, p), where p = (log n+k log log n+
w(n))/n, and limn→∞w(n) =∞.
(a) If k = 2 then G is a.a.s. rigid.
(b) If k = 3 then G is a.a.s. globally rigid.

Proof: (a) We adopt the notation of Lemma 1. It follows from
Lemma 1 that a.a.s. S1 = ∅ and G− S5 is a.a.s. 6-connected.
Hence G − S5 is a.a.s. (globally) rigid by Theorem 6. Since
adding a new vertex joined by at least two new edges to a rigid
graph preserves rigidity, it follows that G is a.a.s. rigid.
(b) This follows in similar way to (a), using the facts that S2 = ∅
and that adding a new vertex joined by at least three new edges
to a globally rigid graph preserves global rigidity. �
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The bounds on p given in Theorem 9 are best possible since if
G ∈ G(n, p) and p = (log n+k log log n+c)/n for any constant
c, then G does not a.a.s. have minimum degree at least k, see
[2].
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The Kagome Lattice
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Let Geom(n, r) denote the probability space of all graphs on
n vertices in which the vertices are distributed uniformly at
random in the unit square and each pair of vertices of distance
at most r are joined by an edge. Suppose G ∈ Geom(n, r). Li,
Wan and Wang [8] have shown that if nπr2 = log n + (2k −
3) log log n+w(n) for k ≥ 2 a fixed integer and limn→∞w(n) =
∞, then G is a.a.s. k-connected. As noted by Eren et al. [4],
this result can be combined with Theorem 6 to deduce that
if nπr2 = log n + 9 log log n + w(n) then G is a.a.s. globally
rigid. On the other hand, it is also shown in [8] that if nπr2 =
log n+(k−1) log log n+c for any constant c, thenG is not a.a.s.
k-connected. It is still conceivable, however, that if nπr2 =
log n+log log n+w(n) then G is a.a.s. rigid, and that if nπr2 =
log n + 2 log log n + w(n) then G is a.a.s. globally rigid.
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6. More general structures

Bar and joint frameworks

rigid bars (edges), universal joints (vertices)

Body and hinge frameworks

rigid bodies (vertices), hinges (edges)
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n-space: Generic Body and Hinge Frameworks

Solved

Body and Hinge Frameworks in 3-space:

Each rigid body has 6 degrees of freedom.
If two bodies are joined along a linear hinge the resulting struc-
ture has one internal degree of freedom.
Each hinge removes 5 degrees of freedom.

A
B
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Graph G = (B,H)

B: vertices for abstract bodies,

H: for pairs of bodies sharing a hinge.

Necessary condition for independence:

5|H ′| ≤ 6|B′| − 6

Theorem 10 (Tay and Whiteley – 1984) The neces-
sary condition is also sufficient for generic independence.
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Algorithms:

6|B′| − 6 = 6(|B′| − 1)

or
6 spanning trees in 5G(B,H), which is the multi-graph ob-
tained from G(B,H), by replacing each edge by a set of 5
parallel edges.
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7. Modeling molecules

(special graphs) - can we predict rigidity?

Single atom and associated bonds

|V | = 5 |E| = 10

|E| = 3|V | − 5 overbraced
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Adjacent atom clusters

Flexible

|B| = 2, |H| = 1, 5|H| = 6|B| − 7,

|V | = 4, |E| = 5, |E| = 3|V | − 7
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Rings of atoms:

Ring of 6 atoms and bonds

Bar and Joint: |V | = 6, |E| = 12, |E| = 3|V | − 6

Body and hinge: |B| = 6, |H| = 6, 5|H| = 6|B| − 6
Just the right number to be rigid - generically.
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Graph G of atoms and covalent bonds
Can we use the body and hinge model to predict rigidity?
Problem: Some hinges are concurrent
Special geometry may lower rank!
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Graph G of atoms and covalent bonds
To utilize the bar and joint model, form G2:
The new edges model second neighbor bond bending pairs.
Count as

3|V | − 6

priority system on bond edges.
Problem: for general graphs G the rank may be lower. (May
work for G2?)
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Lots of experimental evidence
Proofs of correctness for special classes of graphs
Plausibility arguments related to other conjectures on 3-space
rigidity
Sketched proof of equivalence of the two conjectures.
Conjectures embedded in implemented algorithms: FIRST on
the web (Arizona State University)
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8. Molecular Conjecture in the
Plane

Given: Simple graph G = (V,E).

� Regard G as a body and pin graph of a structure in the
plane:

Vertices are bodies.

Edges denote pins.

� Note: Each pin connects just two bodies. Otherwise we
would need a hyper-graph.

� Realizations:

– Amorphous bodies. Embedding specifies the location of
the pins.

– Line bodies. Embedding may specify either lines or pins.

– Question: Does the line realization always exist?
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9. Realization in the Plane.

Theorem 11 If G = (V,E) is simple, then a pin collinear
structure exists.

Take any generic embedding of the structure graph G = (V,E)
in R2. Form the polar of that embedding.
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Question:

Is the polar generic as a line-pin structure?

Question:

Does it have the same rank as a generic body-pin structure?
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A general body-pin structure:

The incidence structure is a hyper-graph. Does it have a pin
collinear realization?
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Theorem 12 A multigraph G can be realized as an in-
finitesimally rigid body and hinge framework in Rd if and
only if (

(
d+1
2

)
− 1)G has

(
d+1
2

)
edge-disjoint spanning trees.

(Tay and Whiteley, 1984)
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Recent Advances in the Generic Rigidity of Structures, Tiong-
Seng Tay and Walter Whiteley Structural Topology # 9, 1984
Many body and hinge structures are built under additional con-
straints. For example in architecture flat panels may be used in
which all hinges are coplanar. In molecular chemistry, we can
model molecules by rigid atoms hinged along the bond lines so
that all hinges to an atom are concurrent. This is the natural
projective dual for the architectural condition.
Conjecture: A multigraph is generically rigid for hinged struc-
tures in n-space iff it is generically rigid for hinged structures
in n-space with all hinges of body vi in a hyperplane Hi of the
space.
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Jackson and Jordan show that the body-and-pin and rod-and-
pin 2-polymatroids of a graph are identical. As a solution to
the molecular conjecture they formulate

Theorem 13 Let G(V,E) be a multigraph. Then the fol-
lowing statements are equivalent:
(a) G has a realization as an infinitesimally rigid body and
hinge framework in R2.
(b) G has a realization as an infinitesimally rigid body-and-
hinge framework (G, q) in R2 with each of the sets of points
{q(e) : e ∈ EG(v)}, v ∈ V , collinear.
(c)2G contains 3 edge disjoint spanning trees.
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10. Combinatorial Allostery

A B

A B
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11. Open problems

� Is the solution of the molecular conjecture useful for com-
putational biology?

� Translate combinatorial allostery to molecules.

� Are random 6-regular graphs rigid in 3-space?

� Generalizations to tensegrities?

� Can sparse random graphs be realized as unit distance
graphs?
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