

Worcester Polytechnic Institute, May 2018

Abstract

Molecules are often modeled as bar-and-joint frameworks in 3-space. While bar-and-joint frameworks are well understood combinatorially as well as goemetrically in the plane, there are many open problems in 3-space Some nice toy research problems accessible even to (high school) students are based on Dill's HP-model Zeolites provide yet another interesting set of examples illustrating the gap between their combinatorial and geometric properties

Modeling molecules

Can we predict rigidity for special graphs? Single atom and associated bonds:

Dill's HP Model of Protein Folding

References

1. Ken A. Dill. Theory for the folding and stability of globular proteins. Biochemistry, 24(6):1501–1509, 1985. 2. P. Fazekas, O. Röschel, and B. Servatius. *The kinematics of a framework presented by H. Harborth and M. Möller.* Beitr. Algebra Geom., 54(1):201–209, 2013.

3. Jack Graver, Brigitte Servatius, and Herman Servatius. Combinatorial rigidity, AMS, 1993.

4. Naoki Katoh and Shin-ichi Tanigawa. A proof of the molecular conjecture. Discrete Comput. Geom., 45(4):647-700, 2011.

5. Tiong-Seng Tay and Walter Whiteley. Recent advances in the generic rigidity of structures. Structural Topology, (9):31-38, 1984.


```
= 5
           |E| = 10
|E| = 3|V| - 5
                 overbraced
```

Adjacent atom clusters When are they Flexible?

- |B| = 2, |H| = 1,5|H| = 6|B| - 7, |E| = 3|V| - 7|V| = 4, |E| = 5,
- Ring of 6 atoms and bonds

Bar and Joint: |E| = 3|V| - 6 |V| = 6, |E| = 12,

|B| = 6, |H| = 6,Body and hinge: 5|H| = 6|B| - 6Just the right number to be rigid - generically.

Zeolites

Chemical Zeolites • crystalline solid • units: Si + 4O

• two covalent bonds per oxygen

Combinatorial Zeolites • A connected complex of corner sharing *d*-dimensional simplices

- At each corner there are exactly two distinct simplices
- Two corner sharing simplices intersect in exactly one vertex.

body-pin graph Vertices: simplices (silicon) Edges: bonds (oxygen)

There is a one-to-one correspondence between combinatorial d-dimensional zeolites and dregular body-pin graphs.

Infinite 2–D symmetric examples:

Space

- Each rigid body has 6 degrees of freedom.
- If two bodies are joined along a linear hinge the resulting structure has one internal degree of freedom.
- Each hinge removes 5 degrees of freedom.

- Graph G = (B, H)
- *B*: vertices for abstract bodies,
- *H*: for pairs of bodies sharing a hinge.
- Necessary condition for independence:

 $5|H'| \le 6|B'| - 6$

• Theorem: (Tay and Whiteley – 1984) The necessary condition is also sufficient for generic independence.

Algorithms:

$$6|B'| - 6 = 6(|B'| - 1)$$

or

6 spanning trees in 5G(B,H), which is the multi-graph obtained from G(B,H), by replacing

Molecular Theorem

The geometric and combinatorial rigidity community focuses on multiple approaches for detecting whether an input set of polynomial equations representing a geometric constraint system (a) has a solution (independence), (b) has continuous paths of solutions (flexibility), (c) has locally isolated solutions (rigidity), or (d) has exactly one solution up to a space of "trivial" transformations in the chosen geometry (global rigidity).

The Molecular conjecture was formulated in 1984 Molecular Theorem (Katoh & Tanigawa 2011) A graph G can be realized as an infinitesimally rigid body-hinge framework in \mathbb{R}^d if and only if it can be realized as an infinitesimally rigid panel-hinge framework in \mathbb{R}^d .

Analyzed Harborth-Möller example (with Peter Fazekas and Otto Röschel)

Figure 1: Saturated Packing of 16 tetrahedra

Figure 3: Model with its two planes of symmetry

the maximal cross section