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Abstract
Molecules are often modeled as bar-and-joint

frameworks in 3-space. While bar-and-joint
frameworks are well understood combinatorially
as well as goemetrically in the plane, there are
many open problems in 3-space Some nice toy re-
search problems accessible even to (high school)
students are based on Dill’s HP-model Zeolites
provide yet another interesting set of examples
illustrating the gap between their combinatorial
and geometric properties
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Rigidity

(Generic) Body and Hinge Frameworks in 3–
Space

• Each rigid body has 6 degrees of freedom.

• If two bodies are joined along a linear hinge
the resulting structure has one internal degree
of freedom.

• Each hinge removes 5 degrees of freedom.

A
B

• Graph G = (B,H)

• B: vertices for abstract bodies,

• H: for pairs of bodies sharing a hinge.

• Necessary condition for independence:

5|H ′| ≤ 6|B′|−6

• Theorem: (Tay and Whiteley – 1984) The nec-
essary condition is also sufficient for generic
independence.

Algorithms:

6|B′|−6 = 6(|B′|−1)

or
6 spanning trees in 5G(B,H), which is the

multi-graph obtained from G(B,H), by replacing
each edge by a set of 5 parallel edges.

Modeling molecules
Can we predict rigidity for special graphs?
Single atom and associated bonds:

|V | = 5 |E|= 10
|E| = 3|V |−5 overbraced

Adjacent atom clusters
When are they Flexible?

|B|= 2, |H|= 1, 5|H|= 6|B|−7,
|V |= 4, |E|= 5, |E|= 3|V |−7

Ring of 6 atoms and bonds

Bar and Joint: |V |= 6, |E|= 12,
|E|= 3|V |−6

Body and hinge: |B|= 6, |H|= 6,
5|H|= 6|B|−6
Just the right number to be rigid - generically.

Molecular Theorem
The geometric and combinatorial rigidity com-

munity focuses on multiple approaches for de-
tecting whether an input set of polynomial equa-
tions representing a geometric constraint system
(a) has a solution (independence), (b) has con-
tinuous paths of solutions (flexibility), (c) has lo-
cally isolated solutions (rigidity), or (d) has ex-
actly one solution up to a space of “trivial” trans-
formations in the chosen geometry (global rigid-
ity).

The Molecular conjecture was formulated in
1984 Molecular Theorem (Katoh & Tanigawa
2011) A graph G can be realized as an infinites-
imally rigid body-hinge framework in Rd if and
only if it can be realized as an infinitesimally rigid
panel-hinge framework in Rd.

Dill’s HP Model of Protein Folding

Zeolites
Chemical Zeolites • crystalline solid

• units: Si+4O
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• two covalent bonds per oxygen

Combinatorial Zeolites • A connected complex
of corner sharing d-dimensional simplices

• At each corner there are exactly two distinct
simplices

• Two corner sharing simplices intersect in ex-
actly one vertex.

body-pin graph Vertices: simplices (silicon)
Edges: bonds (oxygen)

There is a one-to-one correspondence between
combinatorial d-dimensional zeolites and d-
regular body-pin graphs.

Infinite 2–D symmetric examples:

Holes in Symmetrical Zeolites

Analyzed Harborth-Möller example (with Peter
Fazekas and Otto Röschel)
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