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Abstract Modeling molecules

Molecules are often modeled as bar-and-joint Can we predict rigidity for special graphs? *—0—0—0—0-0-0-0-0-0

frameworks 1n 3-space. While bar-and-joint Single atom and associated bonds:
frameworks are well understood combinatorially I::—::I
as well as goemetrically in the plane, there are X %

many open problems in 3-space Some nice toy re-
search problems accessible even to (high school)
students are based on Dill’s HP-model Zeolites

Dill’s HP Model of Protein Folding

provide yet another interesting set of examples VI=5 E| =10
illustrating the gap between their combinatorial E| =3[V| =5 overbraced Ze()lltes
and geometric properties Adjacent atom clusters

When are they Flexible? Chemical Zeolites * crystalline solid

e units: S1+40

References e

1. Ken A. Dill. Theory for the folding and stability of globular proteins. Biochemistry, 24(6):1501-1509, 1985.

2. P. Fazekas, O. Roschel, and B. Servatius. The kinematics of a framework presented by H. Harborth and M. Méller.

Beitr. Algebra Geom., 54(1):201-209, 2013.

4. Noki Katoh and Shinehi Tosigawa. A proof of the mofecar conjecre. Discrete Compu, Geormn, 45(4:647- * two covalent bonds per oxygen

700, 2011.

(59.);1;ifi13gé,sig§4"lfay and Walter Whiteley. Recent advances in the generic rigidity of structures. Structural Topology, ‘ B‘ — 27 ‘ H ’ — 1 ; 5 ’ H ‘ — 6 ’ B‘ — 7’ Comblnatorlal Zeolltes ° A Connected Complex

V|=4,|E| =5, E| =3|V|—=7 of corner sharing d-dimensional simplices
Ring of 6 atoms and bonds * At each corner there are exactly two distinct
simplices

e Two corner sharing simplices intersect in ex-
actly one vertex.

body-pin graph Vertices: simplices (silicon)

Edges: bonds (oxygen)
There is a one-to-one correspondence between

combinatorial d-dimensional zeolites and d-

Bar and Joint: V|=6, |E| =12, |
regular body-pin graphs.
“ 7 Infinite 2—D symmetric examples:

Rigid ~o Rigid

il Body and hinge: |B| =6, |H = 6,
(Generic) Body and Hinge Frameworks in 3— 5|H| =6|B|—6
Space Just the right number to be rigid - generically.

e Each rigid body has 6 degrees of freedom.

 If two bodies are joined along a linear hinge
the resulting structure has one internal degree
of freedom.
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e Each hinge removes 5 degrees of freedom.
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Molecular Theorem

The geometric and combinatorial rigidity com-
munity focuses on multiple approaches for de-
* Graph G = (B, H) tecting whether an input set of polynomial equa-
 B: vertices for abstract bodies, tions representing a geometric constraint system
(a) has a solution (independence), (b) has con-
tinuous paths of solutions (flexibility), (c¢) has lo-
cally isolated solutions (rigidity), or (d) has ex-
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* H: for pairs of bodies sharing a hinge. Analyzed Harborth-Moller example (with Peter

e Necessary condition for independence: Fazekas and Otto Roschel)

5|H'| <6|B'| -6 actly one solution up to a space of “trivial” trans-
« Theorem: (Tay and Whiteley — 1984) The nec- formations in the chosen geometry (global rigid-
essary condition is also sufficient for generic 1ty). , ,
independence. The Molecular conjecture was formulated in
. 1984 Molecular Theorem (Katoh & Tanigawa
Algorithms:

2011) A graph G can be realized as an infinites-
6|B'|—6=6(|B|—1) imally rigid body-hinge framework in R? if and
only if 1t can be realized as an infinitesimally rigid
panel-hinge framework in R¢.

or

6 spanning trees in 5G(B,H), which is the
multi-graph obtained from G(B, H), by replacing
each edge by a set of 5 parallel edges.




