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Curcumin nanodisks: formulation and characteriza-
tion
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A process for synthesizing bilayer zeolite mem-
branes

From the abstract [?]

A silicalite/mordenite bilayered self-supporting membrane with
disc-shape was synthesized from a layered silicate, kanemite
by two steps using solid-state transformation. The mechanical
strength (compression strength) of the membrane was greater
than 10%. Both sides of the membrane were much different
in the morphology and Si0,/Al,O3 ratio. One side (silicalite
side) consisted of the intergrowth of prism-like crystals (ca. 12
pum), while the other side (mordenite side) was composed of
scale-like crystals (ca. > 1um).
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Gas separation with zeolite membranes

In [?] it is described how Zeolite membranes can be used to sep-
arate gases. Membrane technology constitutes an increasingly
important, convenient, and versatile way of separating gas mix-
tures. Zeolite membranes are known to have high permeabilities
in gas separations. Due to the well-defined pore structures, ze-
olite membranes can also offer high selectivities. In addition,
zeolite-based membranes have high chemical, mechanical, and
thermal stability, i.e. can potentially be used at both very high
and very low temperatures, offering a great advantage over poly-
meric membranes.
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1. Chemical Zeolites

e crystalline solid

e units: Si + 40

e two covalent bonds per oxygen




e naturally occurring
e synthesized
e theoretical

Used as microfilters.
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2. Combinatorial Zeolites

Combinatorial d-Dimensional Zeolite

e A connected complex of corner sharing d-dimensional sim-
plices

e At each corner there are exactly two distinct simplices

e T'wo corner sharing simplices intersect in exactly one vertex.

body-pin graph

Vertices: simplices (silicon)

Edges: bonds (oxygen)

There is a one-to-one correspondence between combinatorial
d-dimensional zeolites and d-reqular body-pin graphs.
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Graph of a Combinatorial Zeolite

is obtained by replacing each d-dimensional simplex with K 1.

The graph of the zeolite is the line graph of the Body-Pin graph.

Whitney

[7](1932) proved that connected graphs X on at least 5 vertices

are strongly reconstructible from their line graphs L(X).
Moreover, Aut(X) = Aut(L(X)).
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3. Realization

A realization of a d-dimensional zeolite

A placement (embedding) of the vertices of the d-dimensional
complex in RY.

Equivalently a placement (embedding) of the vertices of the line
graph of the body-pin graph.

unit-distance realization

A realization where all edges join vertices distance 1 apart in
R?,

non-interpenetrating realization

A realization where simplices are disjoint except at joined ver-
tices.



4. The Layer Construction

Z = (T, C) is a combinatorial zeolite realizable in dimension d.

Rd C Rd—H
Label each t € T" arbitrarily with +1.
s For 41, erect a d + 1 dimensional simplex in the upper half
e space,
rite poge | For —1, erect a d + 1 dimensional simplex in the lower half
space,

« | » Call the Complex Z, and its mirror image Z,.

| Alternately staking Z, and Z, gives a layered Zeolite in R4
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The general case starting from a finite zeolite.

Theorem: There are uncountably many isomorphism classes
of unit distance realizable zeolites in R,
(actually in any dimension d > 1. [?])



The Layer Construction
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The Layer Construction
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The Layer Construction
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The typical situation: Not unit distance realizable.




5. 2d Zeolites

| Smallest 2d zeolite is the line graph of K,: The graph of the
octahedron with four (edge disjoint) faces.
Tite Page | For body-pin graphs on more than 4 vertices, the zeolite can be

recovered uniquely from the line-graph.
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A finite 3-D symmetric example:




This 16 Tetrahedra model of Harborth and Moller can be
thought of as a bi-layer.
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A 3-regular graph with line graph
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The Harboth-Moller model

The body pin graph of the Harborth-Moller Model.
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6. Finite Zeolites

Body pin graph: Kj3. Since the body pin graph is not planar,
the resulting zeolite cannot be planar. Its underlying graph
is generically globally rigid. However, it has a unit distance
realization in the plane which is a mechanism.
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7. Finite Zeolites

Body pin graph: Kj3. Since the body pin graph is not planar,
the resulting zeolite cannot be planar. Its underlying graph
is generically globally rigid. However, it has a unit distance
realization in the plane which is a mechanism.
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9. Motions

Degree of Freedom

Each d-dimensional simplex has d(d 4+ 1)/2 degrees of freedom
Home Page | Each of the d + 1 contacts removes d degrees.

By a naive count, a zeolite is rigid - (overbraced by d(d+1)/2.)
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Generically globally rigid in the plane.




Generically globally rigid in the plane.
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Lei»]  [Jackson, S, S — 2004]
]

Gossct |

G|

Quit






QO\‘YTECIy,y
S AZERD /CL
2 EEY
o Y 5
NI

_ 1865 _

Home Page |

- . . .
« | » A A A A A

e V’V V'V

oo | /\
= YYY X
— AVARVAR VAR V/




Are there finite generically flexible 2D Zeolites?
Yes, line graphs of 3-regular graphs with edge connectivity less
than 3.
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It is just as easy to construct infinite symmetric examples:
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Design nano lentils and prove their realization
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Design nano lentils and prove their realization
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Design nano lentils and prove their realization
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