

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Page **1** of **100**

Go Back

Full Screen

Close

Quit

Polarity and Rigidity

Brigitte and Herman Servatius

Worcester Polytechnic Institute

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Title Page

1. Edmond's Theorem

Given a hypergraph H = (V, E). $|E| \times |V|$ Matrix: T(H, X)

$$t_{ij} = \begin{cases} x_{ij} & v_j \in e_i \\ 0 & \text{otherwise} \end{cases}$$

Theorem

 ↓

 ↓

 Page 2 of 100

Go Back

Full Screen

Close

Quit

The rows of T(H, X) are independent if and only if $|E| \leq |V|$ and for each subset $E' \subseteq E$, $|E'| \leq |V'|$ where V' is the set of vertices supporting E'.

Theorem

The kernel of T(H, X) is of dimension k if and only if $|E| \leq |V| - k$ and for each subset $E' \subseteq E$, $|E'| \leq |V'| - k$ where V' is the set of vertices supporting E'.

Example: The Fano Plane

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Page <mark>3</mark> of **100**

Go Back

Full Screen

Close

Quit

0	x_{12}	x_{13}	0	0	x_{16}	0
x_{21}	0	x_{23}	0	x_{25}	0	0
x_{31}	x_{32}	0	x_{34}	0	0	0
0	0	x_{43}	x_{44}	0	0	x_{47}
0	x_{52}	0	0	x_{55}	0	x_{57}
x_{61}	0	0	0	0	x_{66}	x_{67}
0	0	0	x_{74}	x_{75}	x_{76}	0

Edmond's TheoremThe k-planeWhiteley's TheoremJackson Jordán $\mathfrak{M}_2(K_{n,m})$ Rigid Line Structures

Home Page

Title Page

Page 4 of 100

Go Back

Full Screen

Close

44

••

Whiteley's Idea

Start with the matrix of a regular hypergraph.

ſ	0	x_{12}	x_{13}	0	0	x_{16}	0
	x_{21}	0	x_{23}	0	x_{25}	0	0
	x_{31}	x_{32}	0	x_{34}	0	0	0
	0	0	x_{43}	x_{44}	0	0	x_{47}
	0	x_{52}	0	0	x_{55}	0	x_{57}
	x_{61}	0	0	0	0	x_{66}	x_{67}
	0	0	0	x_{74}	x_{75}	x_{76}	0

Quit

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Page 5 of 100

Go Back

Full Screen

Close

Whiteley's Idea

Start with the matrix of a regular hypergraph where

 $|E| \le |V| - 2.$

The matrix with generic entries has a two dimensional kernel.

x_1	x_2	x_3	x_4	x_5	x_6	x_7
y_1	y_2	y_3	y_4	y_5	y_6	y_7

0	x_{12}	x_{13}	0	0	x_{16}	0
x_{21}	0	x_{23}	0	x_{25}	0	0
x_{31}	x_{32}	0	x_{34}	0	0	0
0	0	x_{43}	x_{44}	0	0	x_{47}
0	x_{52}	0	0	x_{55}	0	x_{57}

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Page 6 of 100

Go Back

Full Screen

Close

Quit

Whiteley's Idea

Start with the matrix of a regular hypergraph where

 $|E| \le |V| - 2.$

The matrix with generic entries has a two dimensional kernel.

Scale the columns so there is a row of 1's (alters the matrix, but not its rank properties)

0	x_{12}	x_{13}	0	0	x_{16}	0
x_{21}	0	x_{23}	0	x_{25}	0	0
x_{31}	x_{32}	0	x_{34}	0	0	0
0	0	x_{43}	x_{44}	0	0	x_{47}
0	x_{52}	0	0	x_{55}	0	x_{57}

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Full Screen

Close

Quit

Whiteley's Idea

Start with the matrix of a regular hypergraph where

 $|E| \le |V| - 2.$

The matrix with generic entries has a two dimensional kernel.

Scale the columns so there is a row of 1's (alters the matrix, but not its rank properties)

Since each row is supported by 3 columns, the original (generic) entries can be expressed in terms of the kernel.

0	x_{12}	x_{13}	0	0	x_{16}	0
x_{21}	0	x_{23}	0	x_{25}	0	0
x_{31}	x_{32}	0	x_{34}	0	0	0
0	0	x_{43}	x_{44}	0	0	x_{47}
0	x_{52}	0	0	x_{55}	0	x_{57}

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Close

Quit

Whiteley's Idea

Start with the matrix of a regular hypergraph where

 $|E| \le |V| - 2.$

The matrix with generic entries has a three dimensional kernel.

Scale the columns so there is a row of 1's (alters the matrix, but not its rank properties)

Since each row is supported by 3 columns, the original (generic) entries can be expressed in terms of the kernel.

$$\begin{bmatrix} 0 & x_{12} & x_{13} & 0 & 0 & x_{16} & 0 \end{bmatrix}$$
$$\begin{bmatrix} 0 & \begin{vmatrix} x_3 & x_6 \\ 1 & 1 \end{vmatrix} - \begin{vmatrix} x_2 & x_6 \\ 1 & 1 \end{vmatrix} \begin{vmatrix} 0 & 0 & \begin{vmatrix} x_2 & x_3 \\ 1 & 1 \end{vmatrix} \begin{vmatrix} 0 \end{bmatrix}$$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Full S	Screen
--------	--------

Close

If x_i 's are given, an element of the kernel gives y_i 's such that for every row of the matrix supported by $\{i, j, k\}$, the points $(x_i, y_i), (x_j, y_j)$, and (x_k, y_k) are collinear.

There is a choice of x_i 's so that the matrix entries are generic. \implies there is a choice of x_i 's so that Edmond's Theorem characterizes the independence.

 \implies For any generic x_i 's, Edmond's Theorem characterizes the independence.

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures
Home Page

Full Screen

Close

There is a 2 dimensional space of trivial lifts.

For the Fano Plane we conclude that generically choosing the x-coordinates of a drawing, there is no non-trivial way to chose the y coordinates to represent 5 of the seven lines.

(We know a fifth and sixth line can be represented, but not generically.)

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Home Page	
Title Page	
•• ••	
< ▶	
Page 11 of 100	

Go Back

Full Screen

Close

2. The *k*-plane matroids

Given: A Hypergraph: (A, B; I)The *k*-plane matroid on *I* has has independent sets $I' \subseteq I$ defined via:

For all $I'' \subseteq I'$, we have

 $|I''| \le |A(I'')| + k|B(I'')| - k$

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Go Back

Full Screen

Close

The 2-plane matroids

Given: A Hypergraph: (A, B; I)The 2-plane matroid on I has has independent sets $I' \subseteq I$ defined via:

For all $I'' \subseteq I'$, we have

 $|I''| \le |A(I'')| + 2|B(I'')| - 2$

A: The linesB: the pointsI the incidence relation

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Go Back

Full Screen

Close

The 2-plane matroids

Given: A Hypergraph: (A, B; I)The 2-plane matroid on I has has independent sets $I' \subseteq I$ defined via:

For all $I'' \subseteq I'$, we have

 $|I''| \le |A(I'')| + 2|B(I'')| - 2$

Edmond's Theorem The k-plane... Whiteley's Theorem Jackson Jordán... $\mathfrak{M}_2(K_{n,m})$ Rigid Line Structures

Home Page
Title Page

Page 14 of 100

Go Back

Full Screen

Close

3. Whiteley's Theorem

Given an incidence graph G = (B, J; I) the following are equivalent:

(i) G has a realization as an independent (isostatic) identified body and joint framework in the plane.
(ii) G satisfies

$$2i \le 3b + 2j - 3(=)$$

and, for every subset of bodies and induced subgraph of attached joints,

 $2i' \le 3b' + 2j' - 3.$

(iii) G has an independent (isostatic) realization as an identified body and joint framework in the plane such that each body has all its joints collinear.

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Home Page
Title Page
44 >>
▲ ▶
Page 15 of 100
Go Back
Full Screen

Close

Quit

The Problems

1. Characterizing Rigidity of Body and Pin Frameworks cannot be done by searching for isostatic sub-frameworks.

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$

Rigid Line Structures

The Problems

 Characterizing Rigidity of Body and Pin Frameworks cannot be done by searching for isostatic sub-frameworks.
 Adding pins generically may decrease the degree of freedom by 2, 1 or 0.

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Title Page

Page 17 of 100

Go Back

Full Screen

Close

•

The Problems

1. Characterizing Rigidity of Body and Pin Frameworks cannot be done by searching for isostatic sub-frameworks.

2. Adding pins genericly my increase the degree of freedom by 2 or 0.

3. None of this handles the case of pining multiple bodies with one pin.

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Home Page Title Page

Page 18 of 100

Go Back

Full Screen

Close

Quit

4. Jackson Jordán Theorem

Let G be a multigraph. Then G has an infinitesimally rigid pincollinear body-and-pin realization if and only if 2G contains three edge-disjoint spanning trees.

(In other words the incidence count predicted by Whiteley via Edmonds)

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Title Page

5. $\mathfrak{M}_2(K_{n,m})$

Question: What are the bases

Page **19** of **100**

Go Back

Full Screen

Close

Quit

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Examples:

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Examples:

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Examples:

Edmond's Theorem	
The k-plane	
Whiteley's Theorem	
Jackson Jordán	
$\mathfrak{M}_2(K_{n,m})$	
Rigid Line Structures	
Home Page	

••

6. Rigid Line Structures

Theorem

Page 23 of 100

Go Back

Full Screen

Close

If the 2-plane matroid of an incidence structure has rank a + 2b-2, then placing a points on any line in the plane with generic x-coordinates and joining them appropriately with b rigid bars gives a structure which is infinitesimally rigid in the plane.

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Title Page

• •

Page 24 of 100

Go Back

Full Screen

Close

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Title Page

• •

Page 25 of 100

Go Back

Full Screen

Close

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Title Page

• •

Page 26 of 100

Go Back

Full Screen

Close

Quit

Edmond's Theorem
The k-plane
Whiteley's Theorem
Jackson Jordán
$\mathfrak{M}_2(K_{n,m})$
Rigid Line Structures

Title Page

Page 27 of 100

Go Back

Full Screen

Close

Edmond's Theorem The k-plane... Whiteley's Theorem Jackson Jordán... $\mathfrak{M}_2(K_{n,m})$ Rigid Line Structures

Home Page

Title Page

Page 28 of 100

Go Back

Full Screen

Close

Quit

Edmond's Theorem The k-plane... Whiteley's Theorem Jackson Jordán... $\mathfrak{M}_2(K_{n,m})$ Rigid Line Structures

Home Page

Title Page

Page 29 of 100

Go Back

Full Screen

Close

Quit

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Quit