

Bars

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 1 of 81

Go Back

Full Screen

Close

Quit

Rigidity, connectivity and graph decompositions

 $Herman\ Servatius --- (hservat@wpi.edu)$

Clark Univerity

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 2 of 81

Go Back

Full Screen

Close

Quit

Outline of the Talk

- Beginning Stuff
- Middle Stuff
- Ending Stuff

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

 $Body/Simple\ Pin$

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 3 of 81

Go Back

Full Screen

Close

Quit

1. Angles

Suppose we have n vectors $\mathbf{r}_1, \ldots, \mathbf{r}_n$ of fixed length in \mathbb{R}^3 for which certain pairs of vectors are constrained by their angle from the origin.

Beams, . . .

Generic Rigidity

Dimension 3
Bar/Joint

Body/Simple Pin

Body/Complex Pin

_---,/ --...**p**.-...

Body/hinge

Body/Bar

Home Page

Title Page

Page 4 of 81

Go Back

Full Screen

Close

Quit

Motions:

$$E_{i,j} = \mathbf{r}_i \cdot \mathbf{r}_j \quad \text{for } (i,j) \in E$$

 $E_i = (1/2)\mathbf{r}_i \cdot \mathbf{r}_i \quad \text{for } i \in V,$

Motions require $E_{i,j}$ and E_i be constant.

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 5 of 81

Go Back

Full Screen

Close

Quit

Infinitessimally:

$$(|E| + |V|) \times 3|V|$$
 matrix

		i		j	
	[:	:	:	÷	:]
(i,j)	$0 \cdots 0$	\mathbf{r}_{j}	$0\cdots 0$	\mathbf{r}_i	0 · · · 0
	÷	÷	÷	÷	÷
	÷	:	÷	:	:
i	$0\cdots 0$	\mathbf{r}_i	$0\cdots 0$	0	$0 \cdots 0$
		:	:	:	:
j	$0\cdots 0$	0	$0 \cdots 0$	\mathbf{r}_{j}	$0\cdots 0$
	÷	÷	:	÷	÷

Beams, . . .
Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge Body/Bar

Home Page

Title Page

Page 6 of 81

Go Back

Full Screen

Close

- 6 vectors 18 degrees of freedom
- 3 length constraints
- 9 angle constraints
- 6 trivial degrees of freedom

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 7 of 81

Go Back

Full Screen

Close

Same count - different arrangement:

Angles Bars Beams, . . . Generic Rigidity Dimension 3 Bar/Joint Body/Simple Pin Body/Complex Pin Body/hinge Body/Bar Home Page Title Page **>>** Page 8 of 81 Go Back Full Screen Close

Beams, . . .

.

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 9 of 81

Go Back

Full Screen

Close

Beams. . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge Body/Bar

Home Page

Title Page

Page 10 of 81

Go Back

Full Screen

Close

Quit

Necessary condition for infinitesimal rigidity

- Each vector has 3 degrees of freedom.
- Each vector contributes a length contraint
- Each edge contributes an "angle" constraint.
- With the origin fixed, there are only 3 trivial modes.

$$|V| + |E| \ge 3|V| - 3$$

$$|E| \ge 2|V| - 3$$

Beams. . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 11 of 81

Go Back

Full Screen

Close

Quit

Invariance under scaling

Each vector can be independently scaled without changing the rank of the matrix.

Bars

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Go Back

Full Screen

Close

Quit

Invariance under scaling

Each vector can be independently scaled without changing the rank of the matrix.

	1	2		k	
(1,2)	\mathbf{r}_2	$\alpha \mathbf{r}_1$	0	0	$0\cdots 0$
(1,3)	${f r}_3$	0	$\alpha \mathbf{r}_1$	0	$0 \cdots 0$
	:	÷	÷	÷	÷
(1,k)	\mathbf{r}_k	0		$\alpha \mathbf{r}_1$	$0\cdots 0$
	:	÷	÷	÷	÷
1	$\alpha \mathbf{r}_1$	0	$0 \cdots 0$	0	$0\cdots 0$
	0	:	÷	:	:
	:	÷	÷	÷	: _

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 13 of 81

Go Back

Full Screen

Close

Quit

Invariance under scaling

Each vector can be independently scaled without changing the rank of the matrix.

Bars

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Go Back

Full Screen

Close

Quit

Invariance under scaling

Each vector can be independently scaled without changing the rank of the matrix.

	1	2		k	
(1,2)	\mathbf{r}_2	\mathbf{r}_1	0	0	$0\cdots 0$
(1,3)	\mathbf{r}_3	0	${f r}_1$	0	$0 \cdots 0$
	:	÷	:	÷	÷
(1,k)	\mathbf{r}_k	0		\mathbf{r}_1	$0 \cdots 0$
	:	i	÷	÷	÷
1	$\alpha^2 \mathbf{r}_1$	0	$0\cdots 0$	0	$0\cdots 0$
	0	÷	:	:	÷
	:	÷	:	:	: _

Bars

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 15 of 81

Go Back

Full Screen

Close

Quit

Invariance under scaling

Each vector can be independently scaled without changing the rank of the matrix.

	1	2		k	
(1,2)	lacksquare	\mathbf{r}_1	0	0	$0\cdots 0$
(1,2) (1,3)	\mathbf{r}_3	0	${f r}_1$	0	$0 \cdots 0$
	:	:	:	÷	÷
(1,k)	\mathbf{r}_k	0		\mathbf{r}_1	$0 \cdots 0$
	:	÷	:	÷	÷
1	\mathbf{r}_1	0	$0 \cdots 0$	0	$0\cdots 0$
	0	:	:	:	:
	i	:	:	÷	:

Bars

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 16 of 81

Go Back

Full Screen

Close

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 17 of 81

Go Back

Full Screen

Close

• Scale each vector so that the third coordinate is 1.

$$\mathbf{r}_i = \mathbf{p}_i + \mathbf{k}$$

Angles
Bars
Beams....

Generic Rigidity

Dimension 3
Bar/Joint

 $Body/Simple\ Pin$

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Go Back

Full Screen

Close

Bars

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

 $Body/Simple\ Pin$

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

1 agc 19 01 01

Go Back

Full Screen

Close

Quit

• Scale each vector so that the third coordinate is 1.

$$\mathbf{r}_i = \mathbf{p}_i + \mathbf{k}$$

• The obvious row operations

Bars

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

 $Body/Complex\ Pin$

Body/hinge

Body/Bar

Home Page

Title Page

Page 20 of 81

Go Back

Full Screen

Close

Quit

• Scale each vector so that the third coordinate is 1.

$$\mathbf{r}_i = \mathbf{p}_i + \mathbf{k}$$

- The obvious row operations
- The obvious column operations

Beams. . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 21 of 81

Go Back

Full Screen

Close

Quit

2. Bars

Independence of a configuration 3D position vectors is equivalent to the independence the the configuration as a 2D bar and joint framework.

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 22 of 81

Go Back

Full Screen

Close

Beams, . . .

Generic Rigidity

Dimension 3
Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 23 of 81

Go Back

Full Screen

Close

Quit

3. Beams, Contacts, and Twists

• Framework of beams, some of which have contact points.

Beams, . . .

Generic Rigidity

Dimension 3
Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 24 of 81

Go Back

Full Screen

Close

- Framework of beams, some of which have contact points.
- Motion:
 - Twists the beams out of the plane, into space.
 - Preserves the contact points
 - Preserves the projection onto the xy-plane.
- Animation: Infinitesimal Motion:
 - Show A twist out of square
 - Bird's eye view
 - Edge view

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 25 of 81

Go Back

Full Screen

Close

- Infinitesimal Beam twists: $\{\mathbf{a}_1, \dots, \mathbf{a}_b\}$
- Compatibility Condition

$$\mathbf{a}_i \cdot (B_i \wedge B_j) = \mathbf{a}_i \cdot (B_i \wedge B_j)$$

Infinitesimal System

Angles

Bars

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 26 of 81

Go Back

Full Screen

Close

Angles

Bars Beams, . . .

 $\bullet \mathbf{p}_i \cdot \mathbf{x} = 1$

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

 $Body/Complex\ Pin$

Body/hinge

Body/Bar

Home Page

Title Page

Page 27 of 81

Go Back

Full Screen

Close

Angles

Bars

Beams, . . .

Generic Rigidity

Dimension 3
Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 28 of 81

Go Back

Full Screen

Close

$$\bullet \mathbf{p}_i \cdot \mathbf{x} = 1$$

$$\bullet \ (\mathbf{p}_i - \mathbf{k}) \cdot (\mathbf{x} + \mathbf{k}) = \mathbf{0}$$

Angles

Bars

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 29 of 81

Go Back

Full Screen

Close

- $\bullet \mathbf{p}_i \cdot \mathbf{x} = 1$
- $\bullet \ (\mathbf{p}_i \mathbf{k}) \cdot (\mathbf{x} + \mathbf{k}) = \mathbf{0}$
- $\bullet (\mathbf{p}_{j} \mathbf{k}) \times (\mathbf{p}_{i} \mathbf{k}) = \mathbf{p}_{j} \times \mathbf{p}_{i} \mathbf{k} \times \mathbf{p}_{i} \mathbf{p}_{j} \times \mathbf{k}$ $= \mathbf{p}_{j} \times \mathbf{p}_{i} + \mathbf{k} \times (\mathbf{p}_{j} \mathbf{p}_{i})$ $\sim \mathbf{k} + \frac{\mathbf{k} \times (\mathbf{p}_{j} \mathbf{p}_{i})}{(\mathbf{p}_{i} \times \mathbf{p}_{i}) \cdot \mathbf{k}}$

Angles

Bars

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge Body/Bar

Home Page

Title Page

Page 30 of 81

Go Back

Full Screen

Close

- $\bullet \mathbf{p}_i \cdot \mathbf{x} = 1$
- $\bullet \ (\mathbf{p}_i \mathbf{k}) \cdot (\mathbf{x} + \mathbf{k}) = \mathbf{0}$
- $\bullet (\mathbf{p}_{j} \mathbf{k}) \times (\mathbf{p}_{i} \mathbf{k}) = \mathbf{p}_{j} \times \mathbf{p}_{i} \mathbf{k} \times \mathbf{p}_{i} \mathbf{p}_{j} \times \mathbf{k}$ $= \mathbf{p}_{j} \times \mathbf{p}_{i} + \mathbf{k} \times (\mathbf{p}_{j} \mathbf{p}_{i})$ $\sim \mathbf{k} + \frac{\mathbf{k} \times (\mathbf{p}_{j} \mathbf{p}_{i})}{(\mathbf{p}_{i} \times \mathbf{p}_{i}) \cdot \mathbf{k}}$

$$(i,j) \left[\begin{array}{ccccc} \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} \cdots \mathbf{0} & \frac{\mathbf{k} \times (\mathbf{p}_j - \mathbf{p}_i)}{(\mathbf{p}_j \times \mathbf{p}_i) \cdot \mathbf{k}} & \mathbf{0} \cdots \mathbf{0} & -\frac{\mathbf{k} \times (\mathbf{p}_j - \mathbf{p}_i)}{(\mathbf{p}_j \times \mathbf{p}_i) \cdot \mathbf{k}} & \mathbf{0} \cdots \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{array} \right]$$

Angles

Bars

Beams, . . .

Generic Rigidity

Dimension 3
Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Page 31 of 81

Go Back

Full Screen

Close

- $\bullet \mathbf{p}_i \cdot \mathbf{x} = 1$
- $\bullet (\mathbf{p}_i \mathbf{k}) \cdot (\mathbf{x} + \mathbf{k}) = 1$
- $\bullet (\mathbf{p}_{i} \mathbf{k}) \times (\mathbf{p}_{j} \mathbf{k}) = \mathbf{p}_{i} \times \mathbf{p}_{j} \mathbf{k} \times \mathbf{p}_{j} \mathbf{p}_{i} \times \mathbf{k}$ $= \mathbf{p}_{i} \times \mathbf{p}_{j} + \mathbf{k} \times (\mathbf{p}_{i} \mathbf{p}_{j})$ $\sim \mathbf{k} + \frac{\mathbf{k} \times (\mathbf{p}_{i} \mathbf{p}_{j})}{(\mathbf{p}_{i} \times \mathbf{p}_{i}) \cdot \mathbf{k}}$

Angles

Bars

Beams, . . .

Generic Rigidity

Dimension 3
Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 32 of 81

Go Back

Full Screen

Close

- $\bullet \mathbf{p}_i \cdot \mathbf{x} = 1$
- $\bullet (\mathbf{p}_i \mathbf{k}) \cdot (\mathbf{x} + \mathbf{k}) = 1$
- $\begin{aligned}
 \bullet & (\mathbf{p}_{i} \mathbf{k}) \times (\mathbf{p}_{j} \mathbf{k}) = \mathbf{p}_{i} \times \mathbf{p}_{j} \mathbf{k} \times \mathbf{p}_{j} \mathbf{p}_{i} \times \mathbf{k} \\
 &= \mathbf{p}_{i} \times \mathbf{p}_{j} + \mathbf{k} \times (\mathbf{p}_{i} \mathbf{p}_{j}) \\
 &\sim \mathbf{k} + \frac{\mathbf{k} \times (\mathbf{p}_{i} \mathbf{p}_{j})}{(\mathbf{p}_{i} \times \mathbf{p}_{i}) \cdot \mathbf{k}}
 \end{aligned}$

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

- Tric Tage

Page 33 of 81

Go Back

Full Screen

Close

Quit

Conclusion

Independence for position vector system $\{\mathbf{r}_i\}$ in \mathbb{R}^3 is is equivalent to the independence in the corresponding bar and joint framework, or its polar beam and twist framework.

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 34 of 81

Go Back

Full Screen

Close

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 35 of 81

Go Back

Full Screen

Close

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 36 of 81

Go Back

Full Screen

Close

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 37 of 81

Go Back

Full Screen

Close

Angles

Bars
Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 38 of 81

Go Back

Full Screen

Close

Beams, . . .

Generic Rigidity

Dimension 3 Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 39 of 81

Go Back

Full Screen

Close

Beams. . . .

Generic Rigidity

Dimension 3
Bar/Joint

...

Body/Simple Pin

Body/Complex Pin

Body/hinge Body/Bar

• /

Home Page

Title Page

Page 40 of 81

Go Back

Full Screen

Close

Quit

4. Generic Rigidity

• Laman's Condition

$$-|E| = 2|V(E)| - 3,$$

$$-|F| \le |V(F)| - 3$$
 for $F \subseteq E$

- Henneberg Moves
- Pebble Game
- Tree Decompositions

Beams. . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 41 of 81

Go Back

Full Screen

Close

Quit

Direct Proof of Sufficiency

Suppose G = (V, E) satisfies Crapo's Proper 3T2 Condition:

- E is the union of 3 trees
- Every vertices belongs to exactly two of them.
- No two subtrees have the same span (proper).

 V_{ij} – vertices incident to trees i and j.

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint
Body/Simple Pin

Dody/Simple 1 ii

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 42 of 81

Go Back

Full Screen

Close

Quit

Tripartite Case:

No edges interior to any of the sets V_{ij} .

Map:

- $V_{23} \longrightarrow \text{map to } \mathbf{e}_1$.
- $V_{13} \longrightarrow \text{map to } \mathbf{e}_2$.
- $V_{12} \longrightarrow \text{map to } \mathbf{e}_3$.

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Go Back

Full Screen

Close

Angles

Bars

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 44 of 81

Go Back

Full Screen

Close

Beams, . . .

Generic Rigidity

Dimension 3
Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 45 of 81

Go Back

Full Screen

Close

Quit

Non-tripartite case

• Replace the rows for interior edges with difference vectors

Angles

Bars

Beams, . . .

Generic Rigidity

Dimension 3
Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

44 **>>**

Page 46 of 81

Go Back

Full Screen

Close

Quit

• Replace the rows for interior edges with difference vectors

Beams, . . .

Generic Rigidity

Dimension 3
Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 47 of 81

Go Back

Full Screen

Close

- Replace the rows for interior edges with difference vectors
- But first, perturb

The exterior edges are now mis-aligned

Angles Bars

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 48 of 81

Go Back

Full Screen

Close

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

 $Body/Simple\ Pin$

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 49 of 81

Go Back

Full Screen

Close

Quit

The exterior edges are now mis-aligned

- Normalize the rows corresponding to interior edges.
- Let perturbation go to zero.

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 50 of 81

Go Back

Full Screen

Close

Quit

The exterior edges are now mis-aligned

- Normalize the rows corresponding to interior edges.
- Let perturbation go to zero.

In general, there will be several levels of perturbation

Angles Bars

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page **51** of **81**

Go Back

Full Screen

Close

(Note that one of the three sets may be empty:)

Angles Bars

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 52 of 81

Go Back

Full Screen

Close

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

 $Body/Simple\ Pin$

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 53 of 81

Go Back

Full Screen

Close

Quit

(Note that one of the three sets may be empty:)

The interior edges of a Proper 3T2 decomposition are *combable*.

Beams. . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page **54** of **81**

Go Back

Full Screen

Close

Quit

5. Dimension 3

- 3|V| 6
- Laman's Condition is not Sufficient
- Crapo's 6T3:
 - Six trees,
 - Every vertex belongs to 3 of them.
 - The decomposition is "proper".
 - $-\binom{6}{3} = 20$ possibilities for vertices.

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 55 of 81

Go Back

Full Screen

Close

- 3|V| 6
- Laman's Condition is not Sufficient
- Crapo's 6T3:
 - Six trees,
 - Every vertex belongs to 3 of them.
 - The decomposition is "proper".
 - $-\binom{6}{3} = 20$ possibilities for vertices.

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

 $Body/Simple\ Pin$

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 56 of 81

Go Back

Full Screen

Close

- 3|V| 6
- Laman's Condition is not Sufficient
- Crapo's 6T3:
 - Six trees,
 - Every vertex belongs to 3 of them.
 - The decomposition is "proper".
 - $-\binom{6}{3} = 20$ possibilities for vertices.

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 57 of 81

Go Back

Full Screen

Close

Quit

If

- \bullet G has a Proper 6T3 decomposition
- \bullet G and has only 4 vertex color classes
- lacktriangle
- lacktriangle

G is generically rigid as a configuration of position vectors in \mathbb{R}^4 .

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 58 of 81

Go Back

Full Screen

Close

Quit

If

- \bullet G has a Proper 6T3 decomposition
- \bullet G and has only 4 vertex color classes
- lacktriangle

G is generically rigid as a configuration of position vectors in \mathbb{R}^4 .

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 59 of 81

Go Back

Full Screen

Close

Quit

If

- \bullet G has a Proper 6T3 decomposition
- G and has only 4 vertex color classes
- The color classes intersect in at most one color

lacktriangle

G is generically rigid as a configuration of position vectors in \mathbb{R}^4 .

Beams....

Generic Rigidity

Dimension 3

Bar/Joint

 $Body/Simple\ Pin$

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 60 of 81

Go Back

Full Screen

Close

Quit

If

- \bullet G has a Proper 6T3 decomposition
- G and has only 4 vertex color classes
- The color classes intersect in at most one color
- The interior edges to the color classes are "combable".

Then G is generically rigid as a configuration of position vectors in \mathbb{R}^4 .

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 61 of 81

Go Back

Full Screen

Close

Quit

3BT3

G has a proper 6T3 decomposition if and only if G has a proper decomposition as 3 spanning "broken" trees.

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 62 of 81

Go Back

Full Screen

Close

Quit

3BT3

G has a proper 6T3 decomposition if and only if G has a proper decomposition as 3 spanning "broken" trees.

Beams. . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 63 of 81

Go Back

Full Screen

Close

Quit

3BT3

G has a proper 6T3 decomposition if and only if G has a proper decomposition as 3 spanning "broken" trees.

- The are at most 8 classes of vertices: $(\pm 1, \pm 1, \pm 1)$.
- No edge can join class (i, j, k) to (-i, -j, -k)
- An edge is said to *knit* if its endpoint classes agree in only one coordinate.

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 64 of 81

Go Back

Full Screen

Close

Quit

3BT3

If G has a proper decomposition as 3 spanning "broken" trees and

- The interior edges of each class are combable
- the non-interior edges of each class knit

Then G is generically rigid as a configuration of position vectors in \mathbb{R}^4 .

6. Bar/Joint

Angles Bars

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 65 of 81

Go Back

Full Screen

Close

Beams. . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 66 of 81

Go Back

Full Screen

Close

Quit

Objects Joints $\{\mathbf{p}_1, \dots, \mathbf{p}_n\}$

Constraints Bar Lengths

$$(\mathbf{p}_j - \mathbf{p}_i) \cdot (\mathbf{p}_j - \mathbf{p}_i) = \lambda_{ij}^2$$

Infinitesimal Constraints Scalar equation

$$(\mathbf{p}_j - \mathbf{p}_i) \cdot (\dot{\mathbf{p}}_j - \dot{\mathbf{p}}_i) = 0$$

Combinatorics Bar Joint Graph.

Tree Decomposition Proper 3T2

7. Body/Simple Pin

Angles Bars

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 67 of 81

Go Back

Full Screen

Close

Structure Graph

Tree Decomposition

Bars

Beams. . . . Generic Rigidity Dimension 3

Bar/Joint Body/Simple Pin Body/Complex Pin

Body/hinge

Home Page

Title Page

Page 68 of 81

Go Back

Full Screen

Close

>>

Body/Bar

Constraints Pin Locations $\{\mathbf{p}_{ii}\}$

Objects Body Motions $\mathbf{x} \longrightarrow \mathbf{T}_t + O_t \mathbf{x}$

$$\mathbf{T}_i + O_i \mathbf{p}_{ij} = \mathbf{T}_j + O_j \mathbf{p}_{ij}$$

Infinitesimal Constraints Vector Equation (dependent)

$$A_i + \mathbf{w}_i \times \mathbf{p}_{ij} = A_i + \mathbf{w_i} \times \mathbf{p}_{ij}$$

Combinatorics Vertices: Bodies, Edges: Pins.

$$\binom{n+1}{2}|B|$$
 vs $n|P|$

Tree Decomposition n edged Body-Pin graph decomposes as $\binom{n+1}{2}$ -trees

8. Body/Complex Pin

Angles Bars

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 69 of 81

Go Back

Full Screen

Close

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 70 of 81

Go Back

Full Screen

Close

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 71 of 81

Go Back

Full Screen

Close

Quit

$9. \quad \text{Body/hinge}$

A "hinge" is a co-dimension 2 subspace on which the motions of the bodies agree.

For \mathbb{R}^2 , Body/Hinge is the same as Body/Pin.

For \mathbb{R}^3 , a hinge is a line, which is encoded by two points, \mathbf{p}_{ij} and \mathbf{q}_{ij} .

Tree Decomposition

Beams. . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 72 of 81

Go Back

Full Screen

Close

Quit

Objects Body Motions $\mathbf{x} \longrightarrow \mathbf{T} + O\mathbf{x}$

Constraints Hinge Locations $\{\mathbf{p}_{ij}\}$ (\mathbb{R}^2 : same as body/pin)

$$\mathbf{T}_i + O_i \mathbf{x} = \mathbf{T}_j + O_j \mathbf{x}, \quad \mathbf{x} \in {\{\mathbf{p}_{ij}, \mathbf{q}_{ij}\}}$$

Infinitesimal Constraints Vector Equation (dependent)

$$\mathbf{a}_i + \mathbf{w}_i \times \mathbf{x} = \mathbf{a}_j + \mathbf{w}_j \times \mathbf{x}, \qquad \mathbf{x} \in {\{\mathbf{p}_{ij}, \mathbf{q}_{ij}\}}$$

Combinatorics Vertices: Bodies, Edges: Hinges $\binom{n+1}{2}|B|$ vs (2n-1)|H|

Tree Decomposition n edged Body-Pin graph decomposes as $\binom{n+1}{2}$ -trees

Tree Decomposition

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 73 of 81

Go Back

Full Screen

Close

Quit

 T_i R_i

Tree Decomposition

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 74 of 81

Go Back

Full Screen

Close

Quit

In this form we see the rows $(i,j)_2$ are dependent

Tree Decomposition

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page **75** of **81**

Go Back

Full Screen

Close

Quit

Reducing, we have a somewhat less symmetric $5|E| \times 6|B|$ matrix

Tree Decomposition

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 76 of 81

Go Back

Full Screen

Close

Quit

10. Body/Bar

$$[(T_i + W_i \mathbf{p}_e) - (T_j + W_j \mathbf{q}_e)] \cdot [\mathbf{p}_e - \mathbf{q}_e] = 0$$

$$[T_i - T_j] \cdot [\mathbf{p}_e - \mathbf{q}_e] - [W_i \mathbf{p}_e \cdot \mathbf{q}_e + W_j \mathbf{q}_e \cdot \mathbf{p}_e] = 0$$

$$T_i \qquad R_i \qquad T_j \qquad R_j$$

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 77 of 81

Go Back

Full Screen

Close

Quit

Or in homogeneous coordinates:

Body
$$i$$
 Body j

$$e\left[\begin{array}{cc} (\mathbf{q}_{e},1)\times(\mathbf{p}_{e},1) & (\mathbf{p}_{e},1)\times(\mathbf{q}_{e},1) \end{array}\right]$$

$$(\mathbf{p}_e, 1) \times (\mathbf{q}_e, 1)$$

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 78 of 81

Go Back

Full Screen

Close

Structure Graph

Tree Decomposition

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 79 of 81

Go Back

Full Screen

Close

Structure Graph

Tree Decomposition

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 80 of 81

Go Back

Full Screen

Close

Structure Graph

Tree Decomposition

Beams, . . .

Generic Rigidity

Dimension 3

Bar/Joint

Body/Simple Pin

Body/Complex Pin

Body/hinge

Body/Bar

Home Page

Title Page

Page 81 of 81

Go Back

Full Screen

Close

Quit

Framework

Tree Decomposition