

Zindler's... Whiteley's Theorem

Home Page	
Print	

Page <mark>1</mark> of <mark>36</mark>

Go Back

Full Screen

Close

Quit

Point Line Configurations and their Realizability

Brigitte Servatius

Pr	int
Title	Page
••	••

Close

Zur Theorie der Netze und Configurationen von Konrad Zindler in Graz

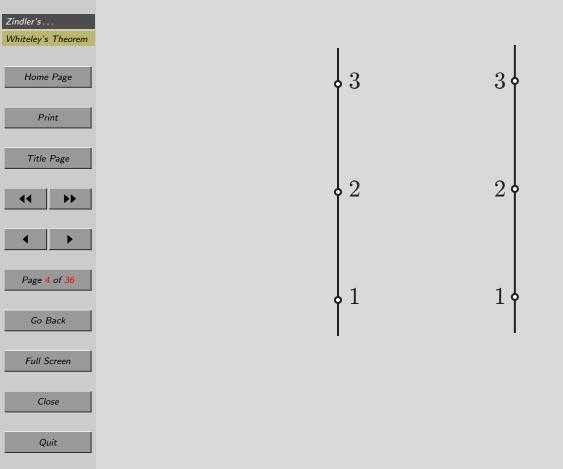
- Elementary proof of a theorem of Möbius:

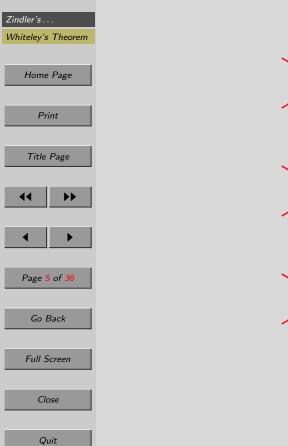
Given 4 points in the plane, one can, by ruler alone construct a point in the ϵ -neighborhood of a given 5'th point for any $\epsilon > 0$.

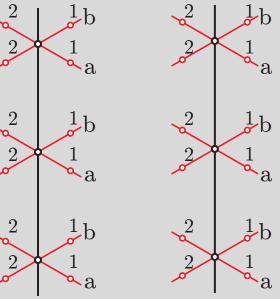
- Generalization of Configuration:

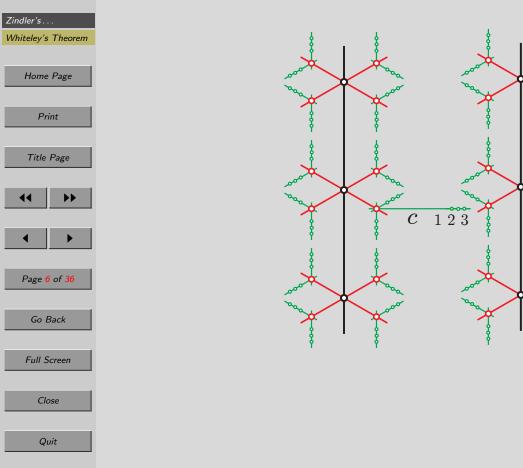
A system of points and lines in the plane such that on every line there are at least 3 points and through every point there are at least 3 lines.

Zindler's Whiteley's Theorem			
Home Page			
Print			
Title Page			
•• ••	1.	Zindler's Construction	
• •			
Page 3 of 36			
Go Back			
Full Screen			
Close			
Quit			



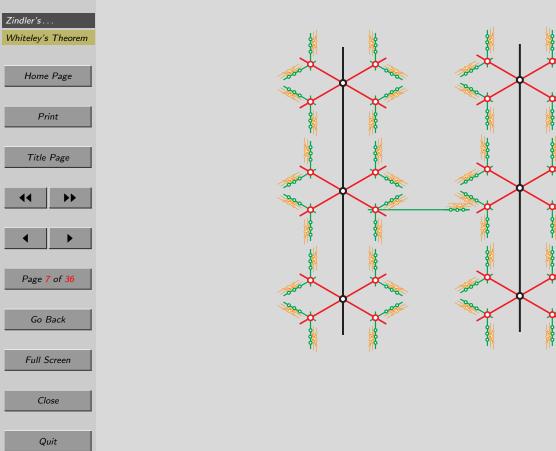






С

С

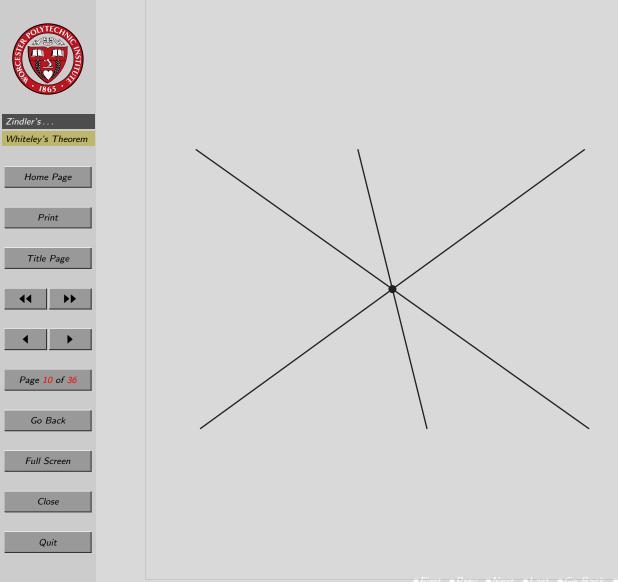


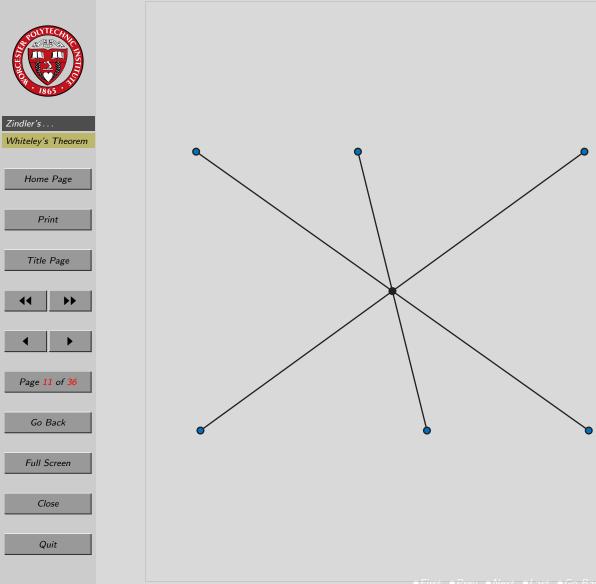
Zindler's . . . Whiteley's Theorem Home Page Print Title Page •• •• Page 8 of 36 Go Back Full Screen

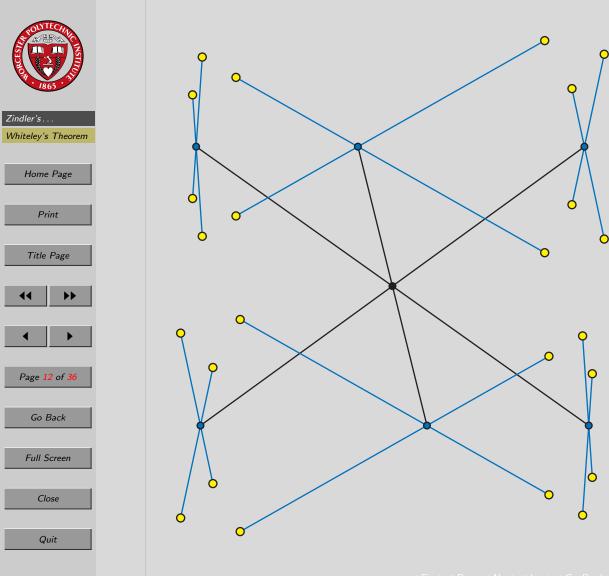
Close

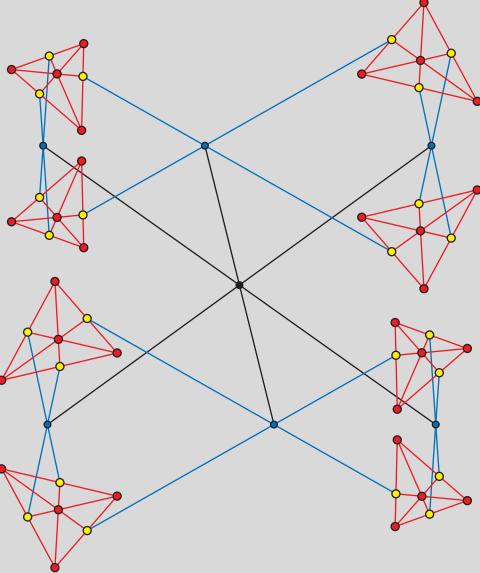
Quit

C 123









Realizable Moves
- Put a new point on a line. /
- Put a new line through a point.
- Intersect two lines.
- Draw a line through two points.
- Join two components by putting a point of one component on
a line of the other component.

Zindler's
Whiteley's Theorem

Home Page

Print

Title Page

Page 15 of 36

Go Back

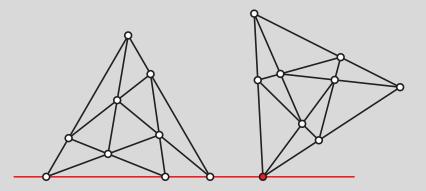
Full Screen

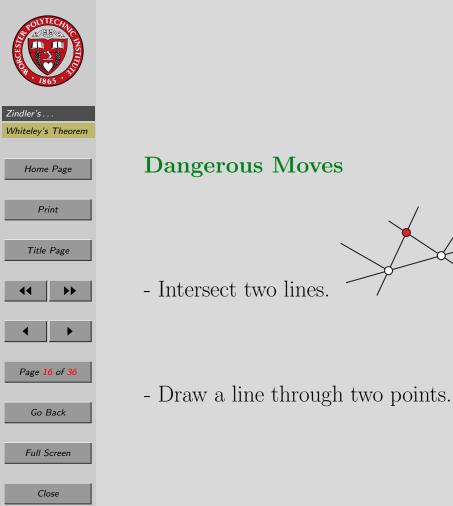
Close

••

Realizable Moves

- Put a new point on a line.
- Put a new line through a point.
- Intersect two lines.
- Draw a line through two points.
- Join two components by putting a point of one component on a line of the other component.





Quit

o lines.

Zindler's... Whiteley's Theorem

Home Page

Print
Title Page

•• 44

Page 17 of 36

Go Back

Full Screen

Close

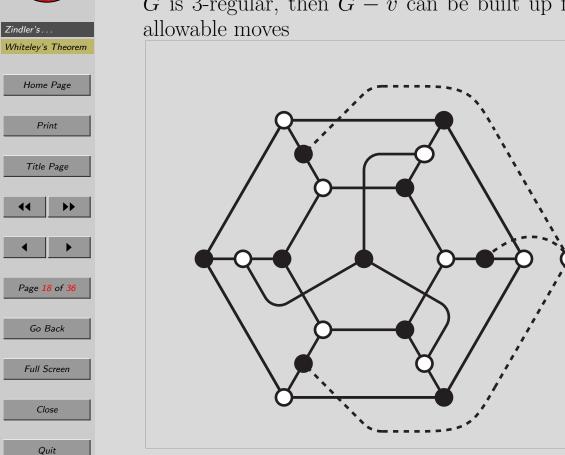
Quit

Realizable Moves on the Levi graph

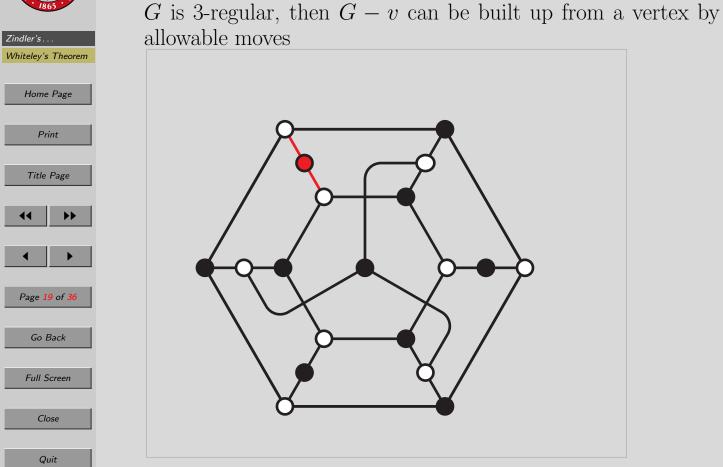
- Add vertices of degree one.
- Add vertices of degree two such that bipartiteness and girth 6 are preserved.

(between points of the same color a distance at least 4) apart.)

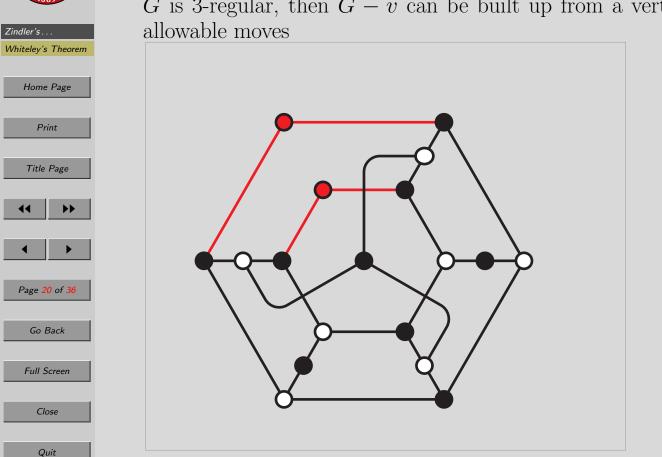
- Add edges between connected components (bridges).



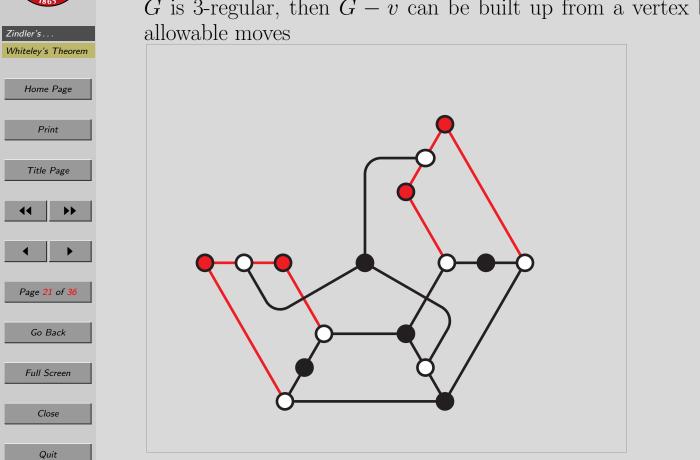
Given a bipartite graph G of girth 6, these moves may be reversed, provided there exists a vertex of degree at most 2. If G is 3-regular, then G - v can be built up from a vertex by allowable moves



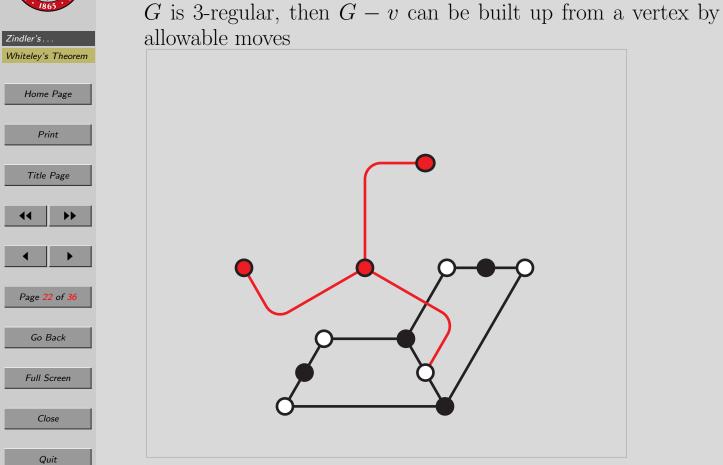
Given a bipartite graph G of girth 6, these moves may be reversed, provided there exists a vertex of degree at most 2. If



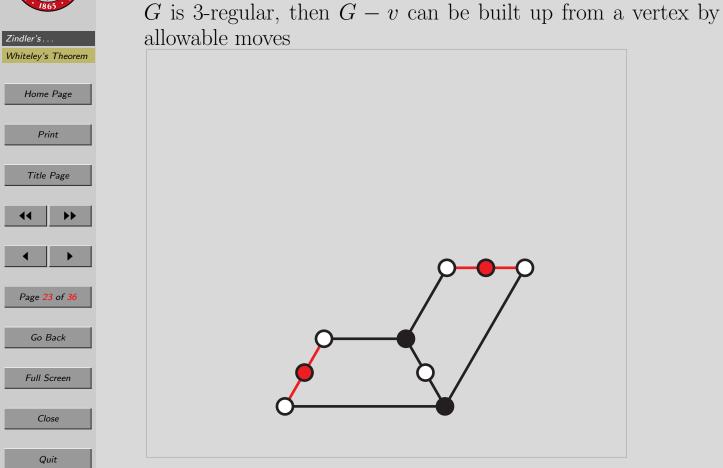
Given a bipartite graph G of girth 6, these moves may be reversed, provided there exists a vertex of degree at most 2. If G is 3-regular, then G - v can be built up from a vertex by allowable moves



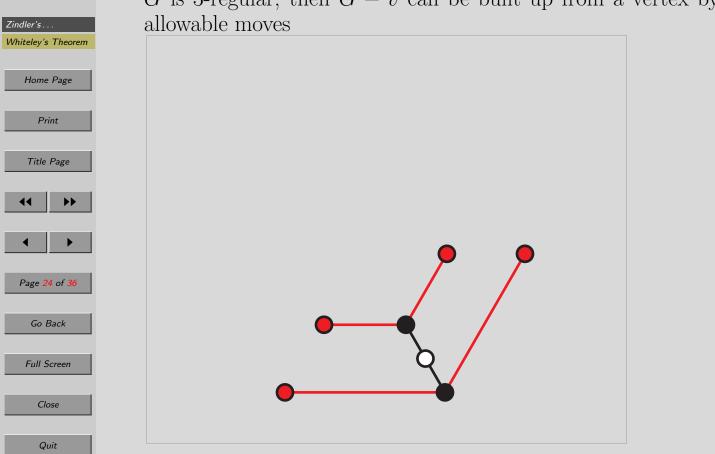
Given a bipartite graph G of girth 6, these moves may be reversed, provided there exists a vertex of degree at most 2. If G is 3-regular, then G - v can be built up from a vertex by allowable moves



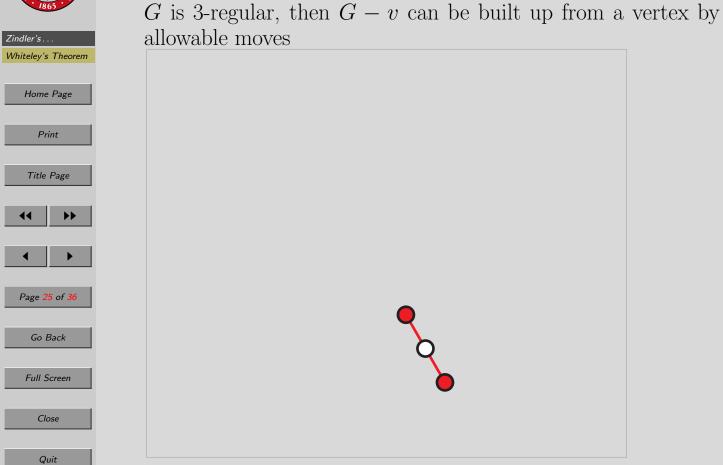
Given a bipartite graph G of girth 6, these moves may be reversed, provided there exists a vertex of degree at most 2. If



Given a bipartite graph G of girth 6, these moves may be reversed, provided there exists a vertex of degree at most 2. If



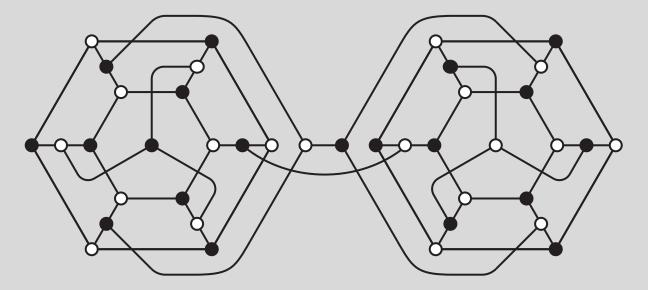
Given a bipartite graph G of girth 6, these moves may be reversed, provided there exists a vertex of degree at most 2. If G is 3-regular, then G - v can be built up from a vertex by allowable moves



Given a bipartite graph G of girth 6, these moves may be reversed, provided there exists a vertex of degree at most 2. If

Close

Quit



Close

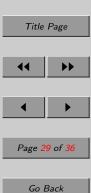
Quit



Close

Quit

Print



Close

Quit

Steinitz's Theorem

Every symmetric v_3 configuration has a realization in the plane with at most one curved line.

Zindler's... Whiteley's Theorem

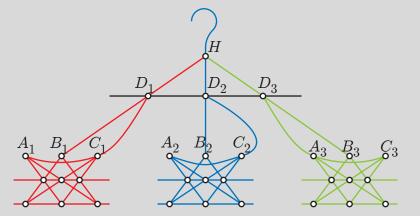
Page <mark>30</mark> of <mark>36</mark>

Go Back

Full Screen

Close

Quit



Zindler's . . . Whiteley's Theorem

Home Page
Print

Grünbaum's Conjecture

is 3-connected. and edge 4-connected.

Steinitz's Theorem is true for configurations whose Levi graph is 3-connected.

Steinitz's Theorem is true for configurations whose Levi graph

Title Page

Theorem

Page **31** of **36**

Go Back

Full Screen

Close

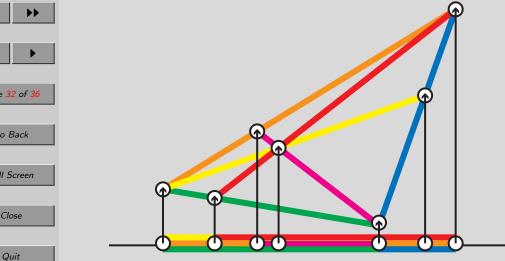
Quit

2. Whiteley's Theorem

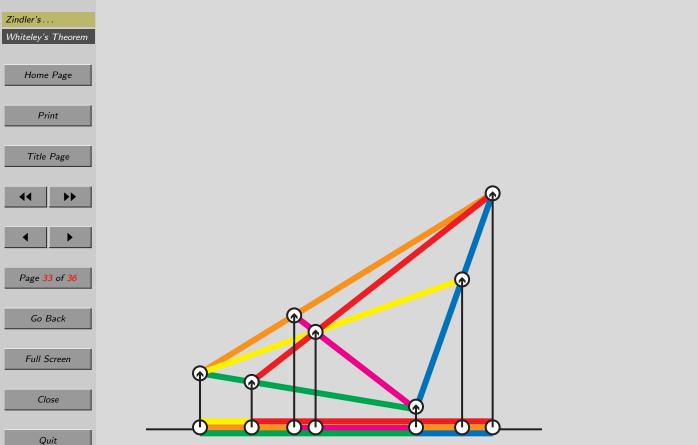
A generic picture in k - 1 space of an incidence structure lifts to a sharp scene in k-space if and only if

$$i \le a + kb - (k+1)$$

for all sub-incidence structures having at least two blocks.



For a 3-regular bipartite graph of girth six Whiteley's count is violated by three.



Quit

For a 3-regular bipartite graph of girth six Whiteley's count is violated by three.

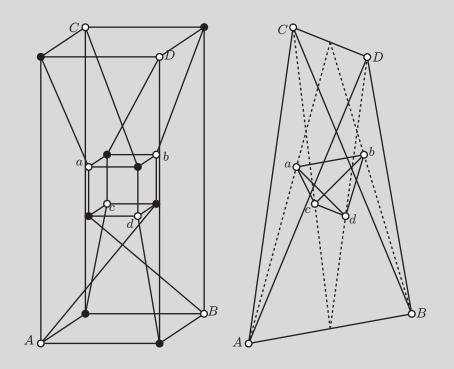
Zindler's	
Whiteley's Theorem	
Home Page	
Print	
Title Page	
	\wedge
• •	
	A A
Page 34 of 36	\mathbf{V}
Go Back	*
Full Screen	
Close	VV

$\overline{\mathbf{\Lambda}}$	i = 6	p = 2	l = 6	l + 2p - 2 = 8	2l + p - 2 = 12
	i = 18			l + 2p - 2 = 20	2l + p - 2 = 18
	i = 24	p = 8	l = 9	l + 2p - 2 = 23	2l + p - 2 = 24
,		p = 9			2l + p - 2 = 25
\sim	i = 3	p = 1	l = 6	l + 2p - 2 = 8	2l + p - 2 = 12
X				l + 2p - 2 = 8 l + 2p - 2 = 20	2l + p - 2 = 12 2l + p - 2 = 18
	i = 9		l = 6		
	i = 9 $i = 21$	p = 8	l = 6 l = 9	l + 2p - 2 = 20 l + 2p - 2 = 23	2l + p - 2 = 18
	i = 9 i = 21 i = 27	p = 8 $p = 8$	l = 6 $l = 9$ $l = 9$	l + 2p - 2 = 20 l + 2p - 2 = 23 l + 2p - 2 = 25	2l + p - 2 = 18 2l + p - 2 = 24

Zindler's... Whiteley's Theorem An (8_4) spatial configuration. a = 8, b = 8, i = 32,

$$a + 3b - 4 = 28$$

Home Page



44

A similar (8_4) spatial configuration. Levi graph is a hypercube a = 8, b = 8, i = 32,Zindler's... Whiteley's Theorem a + 3b - 4 = 28Home Page Print Title Page BBc Page 36 of 36 a Q Go Back Full Screen bbClose Quit